Разновидности и выбор аккумуляторов для солнечных батарей

Сравнение различных типов батарей

Свинцовые батареи стоят дешевле, но они имеют более короткий срок службы и по современным меркам низкую плотность энергии, а некоторые из них требуют регулярного технического обслуживания, чтобы поддерживать их в рабочем состоянии. Литиевые батареи дороже, но они не требуют технического обслуживания и имеют более длительный срок службы, что соответствует их более высокой цене. Давайте более подробно рассмотрим какой лучше взять аккумулятор для солнечных электростанций, плюсы и минусы каждого варианта и объясним, почему вы можете выбрать один из них для своей системы.

Свинцово-кислотные с жидким электролитом

Свинцово-кислотная АКБ с жидким электролитом

Отличительной особенностью этих батарей является то, что свинцовые пластины погружены в жидкий электролит. Их необходимо регулярно проверять и доливать каждые 1-3 месяца, чтобы они работали должным образом. Халатное отношение к обслуживанию может сократить их срок службы и аннулировать гарантию. Поскольку в ходе эксплуатации этот тип АКБ может выделять опасные газы, их необходимо устанавливать в вентилируемом помещении, чтобы позволить газам батареи выходить наружу.

Герметичные свинцово-кислотные

Герметичный свинцово-кислотный аккумулятор

Герметизированные бывают двух типов: AGM и GEL, которые имеют много схожих свойств. Они практически не требуют обслуживания и влагозащищены. Отличия заключаются в электролите – в гелевом аккумуляторе он находится в загущенном состоянии, а в AGM электролит абсорбирован в стекловолокне. Считается, что они не выделяют газы, это не совсем так, поскольку для защиты аккумуляторов предусмотрены клапаны, которые могут открываться в экстренных ситуациях.

Панцирные OPzS и OPzV

Панцирные аккумуляторы типов OPzS и OPzV

Эти аккумуляторы являются разновидностью свинцово-кислотных аккумуляторов: OPzS – с жидким электролитом, а OPzV с электролитом в виде геля. Минусы – низкая плотность энергии и нелинейные разрядные характеристики, свойственные всем свинцовым аккумуляторам. Из плюсов можно отметить 1200-1500 циклов, при глубине разряда на 80%, что в 2-3 раза больше в сравнении с обычными свинцово-кислотными АКБ, но и более высокую цену, которая соизмерима уже со стоимостью LiFePo4 аккумуляторов.

Литий-железо-фосфатные аккумуляторы

Литий-железо-фосфатные аккумуляторы

Одним из лучших химических составов литиевых АКБ для солнечных батарей является литий-железо-фосфат LiFePO4, он же LFP, еще встречается название «Лифер». Эта технология имеет в несколько раз больший срок службы, чем у свинцовых АКБ и может использоваться при более глубоких циклах. Благодаря линейным разрядным характеристикам можно использовать меньшую емкость, при разряде большими токами. Они также не требуют обслуживания или вентиляции, в отличие от заливных свинцово-кислотных батарей. LiFePO4 это одна из разновидностей литий-ионных батарей, но в отличие от них LiFePO4 пожаро-взрывобезопасны.

Литий-титанатные, они же LTO

Литий-титанатная АКБ

Можно уверенно сказать, что это великолепные аккумуляторы и одни из лучших на данный момент и они имеют все вышеперечисленные плюсы LiFePO4 аккумуляторов, но и еще могут заряжаться просто огромнейшими токами в 10С (для сравнения «свинец» можно заряжать токами 0,1 – 0,2С) и имеют ресурс 16000 циклов. Из минусов можно отметить высокую цену и больший вес в сравнении с LiFePO4.

Литий-ионные, они же Li-ion

Имеют очень высокую плотность энергии и малый вес, благодаря чему широко применяются на электротранспорте, в том числе в Тесле, но имеют существенный недостаток — при повреждениях и при работе в нештатном режиме могут воспламеняться. У LiFePO4 и Литий-титанатных аккумуляторов отсутствует этот недостаток, поэтому они более предпочтительны для использования в автономных и бесперебойных системах.

Литий-ионный аккумулятор

Подводя промежуточный итог, можно отметить, что первоначальные вложения на литиевые батареи больше, но при эксплуатации стоимость владения получается значительно ниже — за время эксплуатации литиевых аккумуляторов приходится несколько раз заменить свинцовые АКБ.

Виды аккумуляторов

Для солнечных батарей можно использовать по сути любой аккумулятор. Но главное, чтобы он работал долго. Функционирование АКБ имеет зависимость от типа изготовления и материалов.

Основные виды накопителей энергии:

  1. Литиевые.
  2. Свинцово-кислотные.
  3. Щелочные.
  4. Гелевые.
  5. AGM
  6. Заливные никель-кадмиевые.
  7. OPZS.

Литиевые

Энергия появляется в них в тот момент, когда ионы лития вступают в реакцию с молекулами металлов. Металлы — это дополнительные компоненты.

Данные типы батарей способны очень быстро заряжаться при большой емкости. Весят данные АКБ мало и обладают компактным размером. Кроме этого их себестоимость достаточно высока. Из-за этого их почти не применяют в солнечные энергетики. Работают в 2 раза меньше чем гелевые. Но прослужить еще меньше если заряд превысит 45%. Именно на этой отметке они способны удерживать объем емкости на нужном уровне.

Подобные аккумуляторы функционируют в малых диапазонах напряжения. Существенный минус подобных устройств заключается в уменьшающейся со временем емкости. И это не зависит от соблюдения всех технических правил.

Свинцово-кислотные

На стадии разработки их оснастили несколькими отсеками для электролита с водяным раствором. В эту смесь погружают свинцовые электроды и различные примеси. Благодаря этому АКБ получился стойким к коррозии.

Работают такие устройства не долго. Это объясняется быстротой разряда.

Щелочные

Данные аккумуляторы имеют мало электролита. Их химические вещества не способны в нем раствориться. Они даже не реагируют между собой.

Алкалиновые (щелочные) аккумуляторы способны проработать достаточно долго. Они хорошо устойчивы к скачкам напряжения. В отличие от гелевых данные АКБ способны стабильно работать при пониженных температурах. Причем на морозе они способны проработать много времени.

Хранить их нужно разряженными на 100%. Это нужно для того, чтобы не потерять емкость при будущих зарядках. Такая особенность может серьезно нарушить функционирование солнечной электростанции.

Гелевые

Этот тип имеет такое название потому что электролит в нем представлен в виде геля. За счет решетчатой прослойке он практически не течет.

Данный аккумулятор для солнечных батарей работает долго и может быть много раз перезаряжен. Устойчив к механическим повреждениям. Разного рода трещины не нарушат его функционирование.

Он может работать при низких температурах до -50 градусов и его емкость не снижается. После длительного бездействия гелевый аккумулятор не теряет своих свойств.

Если предстоит использовать этот АКБ в холодном помещение, то его следует утеплить. Ни в коем случае нельзя превышать уровень заряда. В противном случае он может взорваться или выйти из строя. Кроме этого они сильно чувствительны к скачкам напряжения.

AGM

По сути они принадлежат к типу свинцово-кислотных. Но есть отличие — это находящееся внутри стекловолокно, находящееся в электролите. Кислота наполняет прослойки этого материала. Это дает возможность ей не растекаться. Все это говорит о том, что подобный аккумулятор для солнечных батарей можно располагать в любом положении.

Подобные батареи имеют хороший объем емкости, работают долго и могут подзаряжаться до 500 или 1000 раз. Здесь все зависит от производителя. Но несмотря на все достоинства есть существенный недостаток. Они чувствительны к повышенному току. Это может раздуть корпус.

Литые никель-кадмиевые АКБ

Относятся к щелочному типу и нуждаются в заливке электролита. В отличие от аккумуляторов с желеобразным наполнителем они более безопасны. Их стоимость не высока и мощность держат достаточно хорошо. Способны отлично выдерживать много циклов заряда и разряда.

Срок эксплуатации достаточно мал. Чем дольше им пользуешься, тем меньше становится его емкость.

Аккумуляторы для автомобиля

Эти устройства достаточно выгодны в плане экономии денежных средств. Люди, которые самостоятельно изготавливают свою солнечную электростанцию чаще всего используют их.

Минус данных АКБ заключается в быстром износе и частой замене. В результате их можно использовать на небольшой срок и под не высокую мощность солнечных модулей.

Аккумуляторы по типам

Для солнечной энергетики ценность имеют емкие аккумуляторы

Количество циклов заряда также важно, от этого зависит периодичность смены вышедших из строя устройств. Оба фактора непосредственно устанавливаются используемыми технологиями и применяемыми химическими реакциями в батарее

Существуют следующие виды в зависимости от электролитической составляющей:

  • Аккумуляторы, в которых электролит находится в виде геля. Такие конструкции не требуют периодического обслуживания в процессе эксплуатации. Что касается химической основы, — это обычные свинцово-кислотные батареи. Применение геля в качестве основы электролита дополнительно дает увеличение количества циклов заряда, за счет отсутствия связывания проницаемого ионами вещества с частями материала анода. Другими словами, у таких аккумуляторов меньше падает кислотность электролита, что дает возможность отказаться от периодического поднятия его плотности в процессе использования батареи. Аккумуляторы такого типа обозначаются, как «GEL» на корпусе. Их, наверное, самый большой минус — непереносимость перезаряда или пополнения слишком высокими токами.
  • Обычные AGM. Свинцово-кислотные АКБ, распространенные и зачастую используемые в транспорте. В аккумуляторах этого типа основой реакции служит связка химического обмена ионами между контактами свинца с преобразованием его в оксид металла. Электролитом служит раствор серной кислоты. Как раз последний фактор и обеспечивает минус у таких батарей — жидкость, кроме того, что может закипеть, еще и постоянно теряет свою кислотность из-за оседающих в ней остатков от химических реакций обмена. Такие аккумуляторы требуют периодического повышения плотности в процессе эксплуатации. Уровень электролита в одном положении, относительно пластин электродов, поддерживается пропиткой им специальных матов из стекловолокна.
  • Аккумуляторы, в которых в качестве электролита используется щелочная основа. Материал, применяющийся для пластин электродов — водородный металлогидридный сплав никеля с лантаном или литием в качестве анода, и оксид никеля для катода. Электролитом служит сильнощелочной раствор гидроксида калия (KOH). Маркируются такие аккумуляторы, как NiMH. Плюс подобной батареи — отсутствие «эффекта памяти», что позволяет заряжать ее полностью, вне зависимости от текущего уровня запасенной энергии. Кроме того, они абсолютно безопасны для экологии. Минус — ограниченный срок службы и малое количество циклов.

Также аккумуляторы для солнечных панелей различают по металлам, используемым в качестве основы анода и катода. Среди них:

  • Уже упомянутые свинцово-кислотные батареи, основа которых — свинец (Pl), что обязательно бывает отмечено на корпусе накопителя;
  • Никель-кадмиевые, в которых анод изготавливается из гидрата закиси кадмия Cd(OH)2 или его металлического варианта Cd. Применяемый электролит состоит из смеси гидроксидов лития (LiOH) и кадмия (KOH). Катод выполнен путем соединения графитового порошка с гидратом закиси никеля Ni(OH)2. Обычно батареи такого типа маркируются, как NiCd. Характерным минусом служит долгое время заряда и относительно невысокая емкость АКБ, которая еще и уменьшается в процессе эксплуатации из-за сильно выраженного «эффекта памяти» никель-кадмиевых накопителей. Плюсом служит — низкая цена в соотношении с аналогами и малый нагрев при зарядке.
  • Литий ионные с пометкой Li-ion на корпусе. Анод в них выполнен на основе графита, нанесенного на алюминиевую фольгу, а катод с использованием кобальтита лития (LiCoO2) на тонкой медной поверхности. Литиевые аккумуляторы характеризуются низким уровнем саморазряда и быстрым набором энергии. К сожалению, взрывоопасны при неправильном использовании. Еще один минус — они дороги.

Применяются и другие виды по структуре и составу аккумуляторные батареи, но частота их использования с солнечными панелями практически равна нулю.

Виды солнечных модулей-панелей

Гелиопанели-модули собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Массовое применение нашли ФЭП двух видов.

Они отличаются используемыми для их изготовления разновидностями полупроводника из кремния, это:

  • Поликристаллические. Это солнечные элементы, изготовленные из кремниевого расплава путем длительного охлаждения. Несложный метод производства обуславливает доступность цены, но производительность поликристаллического варианта не превышает 12%.
  • Монокристаллические. Это элементы, полученные в результате нарезки на тонкие пластины искусственно выращенного кремниевого кристалла. Самый продуктивный и дорогой вариант. Средний КПД в районе 17 %, можно найти монокристаллические фотоэлементы с более высокой производительностью.

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородной поверхностной структуры квадраты со срезанными углами (псевдоквадраты).

Так выглядят ФЭП – фотоэлектрические преобразователи: характеристики солнечного модуля не зависят от разновидности применяемых элементов – это влияет лишь на размеры и цену

Панели первого исполнения при одинаковой мощности больше размером, чем вторые из-за меньшей эффективности (18% против 22%). Но процентов, в среднем, на десять дешевле и пользуются преимущественным спросом.

О правилах и нюансах выбора солнечных батарей для снабжения энергией автономного отопления вы сможете прочитать здесь.

Расчёт и выбор лучшего АКБ

Расчет АКБ представляет собой определение емкости батареи. Формула (в упрощенном виде) выглядит следующим образом: емкость АКБ = 100 × время × величина нагрузки.

Зная общую емкость, можно вычислить количество аккумуляторов. Для этого следует разделить полученное значение на емкость одного устройства. Если целое число не получается, округлять результат необходимо только в сторону увеличения.

Упрощенная формула определения времени работы (длительность цикла) выглядит так: время = суммарная ёмкость АКБ × напряжение АКБ × (КПД инвертора/мощность нагрузки).

Полученные данные позволяют определиться с параметрами отдельных устройств, подходящих для данной системы. Выбор производится исходя из потребностей и возможностей пользователя. Современный рынок предлагает массу вариантов, которые позволяют получить качественную и долговечную аккумуляторную батарею, состоящую из необходимого количества отдельных устройств.

Необходимо ознакомиться с технической документацией и паспортом устройства, в случае появления сомнений надо попросить показать сертификаты. Если товар качественный, сертификат на него всегда имеется у продавца. Если с этим возникают проблемы, нужный аккумулятор следует поискать в другом магазине.

Области применения аккумуляторов. Требования

Для начала мы определимся с требованиями к аккумуляторам, применяемым в системах электроснабжения. Системы электроснабжения можно условно разделить на 2 большие группы: автономные и резервные.

Автономные системы

Другие статьи Руководства Покупателя АБ

  • Аккумулятор + генератор
  • Аккумуляторные батареи. Ликбез
  • Какая емкость АБ Вам нужна?
  • Сравнение литиевых и свинцовых аккумуляторов
  • Типы аккумуляторов
  • Типы свинцово-кислотных аккумуляторов
  • Характеристики аккумуляторов

В автономных системах требуется сохранение энергии для питания полной нагрузки в течение определенного периода времени. Обычно емкость аккумулятора рассчитывается как минимум на несколько часов. В системах с возобновляемыми источниками энергии аккумулировать энергию нужно на период до нескольких дней – в зависимости от количества пасмурных дней подряд или дней без ветра. Если в системе электроснабжения есть резервный жидкотопливный генератор, то требования к аккумуляторам можно снизить, и рассчитывать их емкость на 12-48 часов работы нагрузки.

К аккумуляторам для автономных систем электроснабжения применяются следующие требования
  1. Высокий КПД заряда, особенно при заряде от ВИЭ; при заряде от генератора этот параметр не  критичен, хотя всегда желательно иметь минимум потерь энергии.
  2. Устойчивость к глубокому разряду (70-100%) – аккумуляторы должны позволять разряд до 80% без ухудшения характеристик и без потери емкости
  3. Большое количество циклов заряд-разряд при глубоком разряде
  4. Возможность быстрого заряда большими токами
  5. Восприимчивость к заряду малыми токами
  6. Возможность находиться в частично заряженном или разряженном состоянии без ущерба сроку службы и характеристикам, устойчивая работа в режимах с хроническим недозарядом
  7. Низкая стоимость цикла заряд-разряд
  8. Низкий саморазряд

Резервные системы

В резервных системах режимы работы аккумуляторов отличаются от автономных. В таких системах аккумуляторы в основном находятся в заряженном состоянии и могут периодически разряжаться с различной глубиной разряда в зависимости от мощности нагрузки и от времени аварий основного источника электроснабжения.

Поэтому требования к АКБ в таких системах не такие жесткие, как в автономных

  1. Возможность работы в буферном режиме, с типично неглубокими разрядами в 5-20%
  2. Восприимчивость к заряду малыми токами
  3. Устойчивость к постоянному подзаряду

Системы с максимальным использованием энергии ВИЭ

В последнее время появились системы, которые не являются автономными и имеют подключение к сетям централизованного электроснабжения, но в этих системах как дополнительный источник энергии присутствуют солнечные батареи, ветрогенераторы или микроГЭС. При отсутствии использования сетей электроснабжения в качестве аккумулятора неограниченной мощности, в таких системах системах появляется необходимость в сохранении энергии, вырабатываемой ВИЭ в пиковые периоды генерации (например, для солнечных батарей это полдень, для ветрогенераторов – периоды с сильным ветром) , и потреблении ее в периоды пикового потребления (например, в типичном жилом доме – в вечернее и утреннее время). Также, такая схема применяется при отсутствии разрешения отдачи излишков энергии в сеть, или если цена за кВт*ч, предлагаемая сетями, ниже розничного тарифа в периоды пикового потребления.

Несмотря на то, что по режимам работы такие системы ближе к резервным, к аккумуляторам для систем максимального самопотребления энергии (в английском языке применяется термин self-consumption) выдвигаются практически такие же требования, как и для АКБ для автономных систем. Отличие только в требуемой емкости аккумуляторной батареи, в системах с самопотреблением они рассчитываются не на несколько дней, а на 0,5-1 сутки.

  1. Безопасность, отсутствие выделения вредных и опасных газов
  2. Возможность вторичной переработки отработавших срок службы и/или вышедших из строя аккумуляторов
  3. Устойчивость к низким и высоким температурам
  4. Отсутствие “эффекта памяти”.

Как работает аккумулятор

Аккумулятор (или аккумуляторная батарея многократного цикла глубокого заряда-разряда), как уже было сказано выше, является необходимым элементом солнечной энергетической системы и представляет собой портативный источник электроэнергии, который работает путем преобразования энергии, возникающей в процессе химической реакции, в электрическую. В общем виде каждый аккумулятор имеет три основных элемента: электроды (катод и анод), электролит и сепаратор.

В любой батарее всегда есть два электрода: катод подключен к положительному полюсу, а анод – к отрицательному полюсу. Когда аккумулятор питает нагрузку, он разряжается, и ток течет от катода к аноду. Т.е. в аккумуляторах, в отличие от, к примеру, полупроводниковых приборов, катод является положительно заряженным, если этот аккумулятор сам выступает как источник тока. Но все меняется, когда аккумулятор заряжается или сам выполняет роль нагрузки. В этом случае ток течет от положительного анода к ставшему отрицательным катоду. Эта перемена создает некоторую путаницу, о которой следует помнить.

Основные части аккумулятора

Электроды погружают в электролит – жидкое или гелеобразное вещество, содержащее электрически заряженные ионы, которые реагируют с электродами. Этот химический процесс заставляет аккумуляторную батарею вырабатывать электроэнергию. Сепаратор физически разделяет электроды. Без него электроды будут соприкасаться, что приводит к короткому замыканию, с последующим разрушением аккумулятора.

Аккумуляторы работают на постоянном токе. Наиболее важными параметрами любой батареи являются:

  • Номинальное напряжение одной ячейки.
  • Номинальная мощность одной ячейки.
  • Количество ячеек в аккумуляторной батарее.
  • Тип аккумуляторной батареи.

Емкость батареи указывает, сколько энергии она может хранить, ее измеряют в ампер-часах (A*ч). Емкость позволяет примерно оценить силу тока аккумулятора через 1 час его разрядки. Чтобы более точно определить возможности аккумулятора, необходимо учесть напряжение аккумуляторной батареи, так как в процессе разряда это напряжение падает. Поэтому емкость аккумуляторов на маркировке обозначают, исходя из 20-часового цикла разряда до конечного напряжения. Например, надпись на маркировке аккумулятора «55 А*ч» означает, что он способен выдавать ток 2,75 ампера на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже уровня 10,5 В.

Часто производители аккумуляторов указывают емкость батареи в ватт-часах (Вт*ч), которая рассчитывается следующим образом:

где:

  • E – энергия в Вт,
  • Vavg – среднее напряжение по циклу разряда,
  • C – емкость аккумулятора в A*ч.

В данном случае емкость эквивалентна запасаемой аккумулятором энергии.

В настоящее время на рынке представлены аккумуляторы емкостью до 3000 A*ч.

Схема работы солнечного электроснабжения

Когда проводишь взглядом по загадочно звучащим названиям узлов, входящих в состав системы питания солнечным светом, приходит мысль о супертехнической сложности устройства.

На микроуровне жизни фотона это так. А наглядно общая схема электрической цепи и принцип ее действия выглядят очень даже просто. От светила небесного до «лампочки Ильича» всего четыре шага.

Солнечные модули – первая составляющая электростанции. Это тонкие прямоугольные панели, собранные из определенного числа стандартных пластин-фотоэлементов. Производители делают фотопанели различными по электрической мощности и напряжению, кратному 12 вольтам.

Устройства плоской формы удобно располагаются на открытых для прямых лучей поверхностях. Модульные блоки объединяются при помощи взаимных подключений в гелиобатарею. Задача батареи преобразовывать получаемую энергию солнца, выдавая постоянный ток заданной величины.

Устройства накопления электрического заряда – аккумуляторы для солнечных батарей известны всем. Роль их внутри системы энергоснабжения от солнца традиционна. Когда домашние потребители подключены к централизованной сети, энергонакопители запасаются электричеством.

Они также аккумулируют его излишки, если для обеспечения расходуемой электроприборами мощности достаточно тока солнечного модуля.

Аккумуляторный блок отдает цепи требуемое количество энергии и поддерживает стабильное напряжение, как только потребление в ней возрастает до повышенного значения. То же происходит, например, ночью при неработающих фотопанелях или во время малосолнечной погоды.

Схема энергообеспечения дома с помощью солнечных батарей отличается от вариантов с коллекторами возможностью накапливать энергию в аккумуляторе

Контроллер – электронный посредник между солнечным модулем и аккумуляторами. Его роль регулировать уровень заряда аккумуляторных батарей. Прибор не допускает их закипания от перезарядки или падения электрического потенциала ниже определенной нормы, необходимой для устойчивой работы всей гелиосистемы.

Переворачивающий, так дословно объясняется звучание термина инвертор для солнечных батарей. Да, ведь на самом деле, этот узел выполняет функцию, когда-то казавшуюся электротехникам фантастикой.

Он преобразует постоянный ток солнечного модуля и аккумуляторов в переменный с разностью потенциалов 220 вольт. Именно такое напряжение является рабочим для подавляющей массы бытовых электроустройств.

Поток солнечной энергии пропорционален положению светила: устанавливая модули, хорошо бы предусмотреть регулировку угла наклона в зависимости от времени года

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей:

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3 кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии. Если аккумулятор 12 вольт 200 А/ч, то энергии в нём поместиться 12*200=2400 ватт (2,4 кВт).

Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%.

Оптимальный запас ёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10 кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200 Ач, и вы через инвертор подключаете электрический чайник на 2 кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250 Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220 в) имеет КПД 70-80%. Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Емкость

При расчете емкости устанавливаемых в систему солнечной электростанции аккумуляторов следует учитывать следующие параметры:

Температура эксплуатации аккумулятроных батарей – от нее напрямую зависит емкость. Емкость АКБ указывается при температуре окружающей среды в 20°С, а уже при 0°С – емкость снижается до 80%. В общем, вот таблица:

Емкость аккумулятора в зависимости от температуры

В нижней части таблицы указывается коэффициент, на который необходимо умножить емкость в зависимости от температурных условий. Становится понятным, что аккумуляторы выгоднее хранить в отапливаемом помещении.

Уровень допустимого разряда. Батареи нельзя разряжать на все 100% — так они очень быстро выходят из строя, поэтому остаточный ток должен составлять не менее 60-70% и чем больше этот %, тем дольше служит аккумулятор в солнечной электростанции.

Что подключается. К сожалению, стоимость аккумуляторных батарей на данный момент такова, что полностью заменить потребление всех токоприемников с их помощью невозможна. Поэтому под аккумуляторы не подключают ни стиральные машины, ни пылесосы, ни другие мощные потребители. Подключается освещение, холодильник, компьютер/ноутбук.

КПД инвертора. Современные преобразователи постоянного тока в переменный весьма производительны, но не превышают 96%,т.е. 4% вы будете терять гарантированно. Подключение светодиодного освещения напрямую к сети в 12В значительно снижает потери.

При различных подходах к экономии электричества, ваши показатели в таблице могут значительно отличаться.

Токоприемники, способные кормиться от аккумуляторов

  • Переводим потребляемую мощность в амперы 6000 Вт / 12 вольт = 500 А
  • 500 А /1,03 = 515 А (делим на коэффициент, при использовании аккумулятора при t = 25°С
  • 515 А / 0,3 = 1716 А (делим на % допустимого разряда батареи)
  • 585,73 А/ 0,96 = 1787 А (делим на КПД инвертора).

Как видим, для обеспечения 6 кВт в сутки понадобится аккумуляторы, общей емкостью не менее 1787 А/ч

Сколько ампер часов в аккумуляторе автомобиля

Емкость батареи — величина переменная, зависит от индивидуальных особенностей аккумулятора. Обычно аккумулятор собирают последовательно, а это значит, емкость измеряется по самой слабой банке. Напряжение суммируется.

Известно, что жидкие кислотные аккумуляторы имеют 6 банок, каждая из них несет напряжение 2,1 – 2,15 В. Емкость – количество энергии в ампер-часах, запасенное в аккумуляторе. Этот показатель – характеристика паспортная.

Найти фактическую емкость можно, измеряя отдачу энергии от полного заряда до минимально возможного разряда при постоянном токе и сопротивлении. Засекается время и сила тока. Их произведение определяет емкость аккумулятора в ампер-часах. Показатель будет отличаться от паспортного, так как емкость аккумулятора постоянно снижается из-за дополнительных химических реакций.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий