Газоразрядные лампы: виды, устройство, как правильно выбрать лучшие

Виды газоразрядных ламп.

По давлению различают: 

  • ГРЛ низкого давления 
  • ГРЛ высокого давления

Газоразрядные лампы низкого давления.

Люминесцентные лампы (ЛЛ) – предназначены для освещения. Представляют собой трубку, покрытую изнутри люминофорным слоем. На электроды подается импульс высокого напряжения (обычно от шестисот вольт и выше). Электроды разогреваются, между ними возникает тлеющий разряд. Под воздействием разряда начинает излучать свет люминофор. То, что мы видим – это свечение люминофора, а не сам тлеющий разряд. Они работают при низком давлении.

Подробнее о люминесцентных лампах — тут

Компактные люминесцентные лампы (КЛЛ) принципиально ничем не отличаются от ЛЛ. Различие только в размерах, форме колбы. Плата с электроникой для запуска, как правило, встроена в сам цоколь. Все направлено на миниатюризацию.

Подробнее об устройстве КЛЛ —  тут

Лампы подсветки дисплеев также не имеют принципиальных отличий. Питаются от инвертора.

Индукционные лампы. Этот тип осветителя не имеет никаких электродов в свое колбе. Колба традиционно заполнена инертным газом (аргон) и парами ртути, а стенки покрыты слоем люминофора. Ионизация газа происходит под действие высокочастотного (от 25 кГц) переменного магнитного поля. Сам генератор и колба с газом могут составлять одно целое устройство, но есть и варианты разнесённого изготовления.

Газоразрядные лампы высокого давления.

Существуют и приборы высокого давления. Давление внутри колбы превышает атмосферное.

Дуговые ртутные лампы (сокращенно ДРЛ) ранее применялись для наружного уличного освещения. В настоящее время применяются все реже. На смену им приходят металлогалогеновые и натриевые источники света. Причина – низкая эффективность.

Внешний вид лампы ДРЛ

Дуговые ртутные лампы с йодидами (ДРИ) содержат горелку в виде трубки из плавленого кварцевого стекла. В ней находятся электроды. Сама горелка наполнена аргоном – инертным газом с примесями ртути и йодидов редкоземельных металлов. Может содержать цезий. Сама горелка размещена внутри колбы из жаропрочного стекла. Из колбы выкачан воздух, практически горелка находится в вакууме. Более современные оснащаются горелкой из керамики – она не темнеет. Применяются для освещения больших площадей. Типичные мощности от 250 до 3500 Вт.

Дуговые натриевые трубчатые лампы (ДНаТ) имеют вдвое большую светоотдачу в сравнении с ДРЛ при тех же потребляемых мощностях. Эта разновидность предназначена для уличного освещения. Горелка содержит инертный газ – ксенон и пары ртути и натрия. Эту лампу можно сразу узнать по свечению – свет имеет оранжево-желтый или золотистый оттенок. Отличаются довольно большим временем перехода в выключенное состояние (около 10 минут).

Дуговые ксеноновые трубчатые источники света характеризуются белым ярким светом, спектрально близким к дневному. Мощность лам может достигать 18 кВт. Современные варианты выполнены из кварцевого стекла. Давление может достигать 25 Атм. Электроды изготавливаются из вольфрама, легированного торием. Иногда применяется сапфировое стекло. Такое решение обеспечивает преобладание ультрафиолета в спектре.

Световой поток создается плазмой около отрицательного электрода. Если в состав паров входит ртуть, то свечение возникает возле анода и катода. К этому типу относят и вспышки. Типичный пример – ИФК-120. Их можно опознать по дополнительному третьему электроду. Благодаря своему спектру они отлично подходят для фотодела.

Металлогалогенные газоразрядные лампы (МГЛ) характеризуются компактностью, мощностью и эффективностью. Зачастую применяются в осветительных приборах. Конструктивно представляют собой горелку, помещенную в вакуумную колбу. Горелка изготовлена из керамики, либо кварцевого стекла и заполнена парами ртути и галогенидами металлов. Это необходимо для корректировки спектра. Свет излучается плазмой между электродами в горелке. Мощность может достигать 3.5 кВт. В зависимости от примесей в парах ртути возможен разный цвет светового потока. Обладают хорошей светоотдачей. Сроком эксплуатации может достигать 12 тысяч часов. При этом имеет хорошую цветопередачу. Долго выходит на рабочий режим – около 10 минут.

Принцип работы газоразрядной лампы

При проверке производительности лампы нужно соблюдать некоторые рекомендации:

  1. Не спешите вставлять новую модель на место испортившейся, нужно убедиться, что дроссель не замкнут, в противном случае могут сгореть сразу несколько деталей.
  2. Используйте при установке сначала диод с целыми спиралями, но не рабочую, в которой ранее мигал либо светился газ. Если спирали останутся в порядке, то можно устанавливать и вкручивать новую модель, если же сгорят, то стоит изменять сам дроссель.
  3. Если нужен дополнительный ремонт, то начинать нужно со стартера, который выходит из строя чаще других составных конструкции лампы.
  4. Что нужно помнить? Нужно знать, что проверить и стартер, и дроссель индивидуально без использования специализированных устройств – почти нереально.

Чем отличаются светодиодные светильники?

  1. Высокий показатель экономии энергии и электричества.
  2. Экологически чистые составляющие, не нуждаются в особой утилизации либо уходе.
  3. Срок эксплуатации при непрерывной работе равен 40–60 тысяч часов.
  4. Поток света нормализован во всём диапазоне питающегося напряжения от 170 до 264В, при этом показателей освещённости не меняется.
  5. Быстрое разогревание и включение.
  6. Не имеет в составе ртути.
  7. Нет пусковых токов.
  8. Хорошая цветопередача.
  9. Есть возможность самостоятельно регулировать мощность.

Газоразрядные лампы

Виды газоразрядных ламп.

По давлению различают: 

  • ГРЛ низкого давления 
  • ГРЛ высокого давления

Газоразрядные лампы низкого давления.

Люминесцентные лампы (ЛЛ) – предназначены для освещения. Представляют собой трубку, покрытую изнутри люминофорным слоем. На электроды подается импульс высокого напряжения (обычно от шестисот вольт и выше). Электроды разогреваются, между ними возникает тлеющий разряд. Под воздействием разряда начинает излучать свет люминофор. То, что мы видим – это свечение люминофора, а не сам тлеющий разряд. Они работают при низком давлении.

Подробнее о люминесцентных лампах — тут

Компактные люминесцентные лампы (КЛЛ) принципиально ничем не отличаются от ЛЛ. Различие только в размерах, форме колбы. Плата с электроникой для запуска, как правило, встроена в сам цоколь. Все направлено на миниатюризацию.

Подробнее об устройстве КЛЛ —  тут

Лампы подсветки дисплеев также не имеют принципиальных отличий. Питаются от инвертора.

Индукционные лампы. Этот тип осветителя не имеет никаких электродов в свое колбе. Колба традиционно заполнена инертным газом (аргон) и парами ртути, а стенки покрыты слоем люминофора. Ионизация газа происходит под действие высокочастотного (от 25 кГц) переменного магнитного поля. Сам генератор и колба с газом могут составлять одно целое устройство, но есть и варианты разнесённого изготовления.

Газоразрядные лампы высокого давления.

Существуют и приборы высокого давления. Давление внутри колбы превышает атмосферное.

Дуговые ртутные лампы (сокращенно ДРЛ) ранее применялись для наружного уличного освещения. В настоящее время применяются все реже. На смену им приходят металлогалогеновые и натриевые источники света. Причина – низкая эффективность.

Внешний вид лампы ДРЛ

Дуговые ртутные лампы с йодидами (ДРИ) содержат горелку в виде трубки из плавленого кварцевого стекла. В ней находятся электроды. Сама горелка наполнена аргоном – инертным газом с примесями ртути и йодидов редкоземельных металлов. Может содержать цезий. Сама горелка размещена внутри колбы из жаропрочного стекла. Из колбы выкачан воздух, практически горелка находится в вакууме. Более современные оснащаются горелкой из керамики – она не темнеет. Применяются для освещения больших площадей. Типичные мощности от 250 до 3500 Вт.

Дуговые натриевые трубчатые лампы (ДНаТ) имеют вдвое большую светоотдачу в сравнении с ДРЛ при тех же потребляемых мощностях. Эта разновидность предназначена для уличного освещения. Горелка содержит инертный газ – ксенон и пары ртути и натрия. Эту лампу можно сразу узнать по свечению – свет имеет оранжево-желтый или золотистый оттенок. Отличаются довольно большим временем перехода в выключенное состояние (около 10 минут).

Дуговые ксеноновые трубчатые источники света характеризуются белым ярким светом, спектрально близким к дневному. Мощность лам может достигать 18 кВт. Современные варианты выполнены из кварцевого стекла. Давление может достигать 25 Атм. Электроды изготавливаются из вольфрама, легированного торием. Иногда применяется сапфировое стекло. Такое решение обеспечивает преобладание ультрафиолета в спектре.

Световой поток создается плазмой около отрицательного электрода. Если в состав паров входит ртуть, то свечение возникает возле анода и катода. К этому типу относят и вспышки. Типичный пример – ИФК-120. Их можно опознать по дополнительному третьему электроду. Благодаря своему спектру они отлично подходят для фотодела.

Металлогалогенные газоразрядные лампы (МГЛ) характеризуются компактностью, мощностью и эффективностью. Зачастую применяются в осветительных приборах. Конструктивно представляют собой горелку, помещенную в вакуумную колбу. Горелка изготовлена из керамики, либо кварцевого стекла и заполнена парами ртути и галогенидами металлов. Это необходимо для корректировки спектра. Свет излучается плазмой между электродами в горелке. Мощность может достигать 3.5 кВт. В зависимости от примесей в парах ртути возможен разный цвет светового потока. Обладают хорошей светоотдачей. Сроком эксплуатации может достигать 12 тысяч часов. При этом имеет хорошую цветопередачу. Долго выходит на рабочий режим – около 10 минут.

Область применения

Конструкционные особенности, которыми обладают газоразрядные лампочки, обеспечили им обширную область применении. Сегодня подобная продукция применяется для:

  • создания уличного освещения в городской и сельской местности. Отлично такие лампы смотрятся, если они вкручиваются в фонари для создания качественной подсветки парков и скверов;
  • освещения производственных сооружений, магазинов, торговых площадок, офисов, а также общественных помещений;
  • с помощью газоразрядных источников света, которые вкручены в фонари, можно оформить уличную декоративную подсветку зданий или пешеходных дорожек;
  • подсветки наружной рекламы и рекламных щитов;
  • высокохудожественного освещения эстрад и кинотеатров. Но здесь необходимо применение специального оборудования.

Освещение в авто

Отдельно стоит отметить, что источники света газоразрядного типа сегодня очень часто используются для освещения транспортных средств. Здесь зачастую применяются грл с высокой интенсивностью (например, неоновые). Многие авто имеют в своей комплектации фары, которые заполнены газообразной смесью из металлогалоидных солей и ксенона. Такие фары можно встретить в таких марках, как БМВ, Тойота или Опель. Иногда подобные лампочки можно встретить и в подсветке дома. Но здесь необходимо обязательно учитывать специфику источников света, чтобы их недостатки можно было минимизировать. Но в целом область применения данной продукции достаточно обширна и разнообразна.

Специфика применения: плюсы и минусы ламп

Осветители типа ДРЛ преимущественно устанавливаются на столбах для освещения улиц, проезжих дорог, парковых зон, придомовых территорий и нежилых сооружений. Это обусловлено техническими и эксплуатационными особенностями ламп.

Главный плюс ртутно-дуговых приборов – высокая мощность, обеспечивающая качественное освещение просторных площадей и крупных объектов.

Стоит отметить, что паспортные данные ДРЛ по световому потоку актуальны для новых ламп. Спустя квартал яркость ухудшается на 15%, через год – на 30%

К числу дополнительных достоинств можно отнести:

  1. Долговечность. Средний срок работы, заявляемый производителями, – 12 тысяч часов. При этом, чем мощнее лампа, тем она дольше прослужит.
  2. Работа при низких температурах. Этот решающий параметр при выборе осветительного прибора для улицы. Газоразрядные лампы морозостойки и сохраняют свои рабочие характеристики при минусовых температурах.
  3. Хорошая яркость и угол освещения. Светоотдача ДРЛ-приборов зависимо от их мощности колеблется в пределах 45-60 Лм/В. Благодаря работе кварцевой горелки и люминофорному покрытию колбы достигается равномерное распределение света с широким углом рассеивания.
  4. Компактность. Лампы относительно небольшие, длина изделия на 125 Вт около 18 см, прибора на 145 Вт – 41 см. Диаметр – 76 и 167 мм соответственно.

Одна из особенностей использования осветителей ДРЛ – необходимость подключения к сети через дроссель. Роль посредника – ограничение тока, питающего лампочку. Если подсоединить осветительный прибор в обход дросселя, то из-за большого электротока он сгорит.

Схематично подключение представлено последовательным соединением ртутной люминофорной лампы через дроссель к сети питания. Во многие современные осветители ДРЛ уже встроен пускорегулирующий механизм – такие модели дороже обычных ламп

Ряд недостатков ограничивает применение ДРЛ-светильников в быту.

Значимые минусы:

  1. Длительность розжига. Выход на полную освещенность – до 15 минут. Для разогрева ртути требуется время, что в условиях дома очень неудобно.
  2. Чувствительность к качеству электроснабжения. При понижении напряжения на 20% и более от номинального значения, включить ртутную лампу не получится, а светящийся прибор потухнет. При снижении показателя на 10-15% – ухудшается яркость света на 25-30%.
  3. Шум при работе. ДРЛ-светильник издает жужжащий звук, не заметный на улице, но ощутимый в помещении.
  4. Пульсация. Несмотря на применение стабилизатора, лампочки мерцают – выполнять длительную работу при таком освещении нежелательно.
  5. Низкая цветопередача. Параметр характеризует реальность восприятия окружающих цветов. Рекомендованный индекс цветопередачи для жилых помещений – не менее 80, оптимально – 90-97. У ламп ДРЛ значение показателя не достигает 50-ти. При таком освещении невозможно четко различать оттенки и цвета.
  6. Небезопасность применения. В процессе работы выделяется озон, поэтому при эксплуатации лампы внутри помещения требуется организация качественной вентсистемы.

Кроме того, наличие в колбе ртути само по себе представляет потенциальную опасность. Такие лампочки после использования нельзя просто выбросить. Чтобы не загрязнять окружающую среду, они утилизируются соответствующим образом.

Еще одно ограничение применения газоразрядных ламп в быту – необходимость их установки на значительной высоте. Модели мощностью 125 Вт – подвес в 4 м, 250 Вт – 6 м, 400 Вт и мощнее – 8 м

Существенный минус ДРЛ осветителей – невозможность повторного включения до полного остывания лампы. При работе прибора давление газа внутри стеклянной колбы сильно повышается (до 100 кПа). Пока лампа не остынет, пробить искровой промежуток напряжением запуска невозможно. Повторное включение происходит примерно через четверть часа.

Как выбрать лампу

При выборе лампы важен температурный режим использования прибора, показатель электрического напряжения в сети, размеры ламп, сила светового потока, оттенок излучения. Параметры цоколей люминесцентных ламп должны соответствовать типам светильников, торшеров и т.д.

Различается подбор ламп по типу помещения (прихожие, гостиные, спальни, ванные и т.д.). Для жилых пространств подходят модели с резьбовым цоколем и электронным балластом, т.к. не имеют резкого мерцания и бесшумны.

Для прихожих необходимы мощные светильники с интенсивным, при этом рассеянным освещением. Для настенных бра подойдут приборы компактного типа с теплым оттенком (930) и цветопередачей высокого качества. Над карнизом под потолком можно монтировать ленточные светильники с лампами холодного оттенка (860) и трубчатой конструкцией.

В гостиной люминесцентные устройства используются для бра, которые монтируются для подсветки зон либо декоративных элементов. Цвет подбирается белый, высокого качества (940). Возможен монтаж осветительных устройств по периметру потолка.

В спальни рекомендуется выбирать люминесцентные приборы стандартные с показателем 930-933 либо компактные устройства с похожими качествами.

Освещение в кухонной зоне должно быть многоуровневым (общим и локальным). В качестве потолочных рекомендованы компактные устройства мощностью не меньше 20 Вт, оттенок света должен быть теплым, с показателем не ниже 840. Для обустройства рабочей зоны на кухне оптимальны лампы линейные люминесцентные, не создающие блики на поверхностях.

Конструктивные особенности изделий

Под газоразрядными лампами следует понимать альтернативный традиционным источникам света компактный прибор, главная особенность которого — излучение света в диапазоне, который человек способен охватить взглядом. Чтобы понять принцип работы устройства, нужно разобраться с его конструктивными особенностями.

Основа изделия — это стеклянная колба. В нее под определенным давлением закачивают пары металла, но чаще газ. Дополнительные элементы — электроды по краям стеклянной колбы.

Понимая особенности строения изделия, можно представить себе принцип его работы. Построен он на действии электрического разряда, который пропускает через себя стеклянная колба с электродами. Ядро колбы — главный электрод. Под ним работает токоограничительный резистор. В то время как электрический разряд проходит через колбу, она начинает излучать свет.


Строение лампы

Кроме перечисленных выше электродов и колбы, лампа имеет цоколь. Именно он позволяет расширить сферу использования изделия. Его можно вкручивать в осветительные приборы разного назначения.

Газоразрядные лампы низкого давления

Самыми распространёнными моделями с низким накаливанием можно назвать люминесцентные устройства. В общем такая модель способна хорошо сэкономить лишнее электричество. На сегодняшний день они распространены повсеместно и поэтому имеют высокий показатель потребительского спроса. В большинстве случаев они используются в школах, магазинах и медицинских учреждения. Обычно на территории улиц они почти не применяются. Отдельной разновидностью моделей с низким накаливанием считаются люминесцентные энергосберегающие приборы. Главным их достоинством считается компактная конструкция.

Светодиоды

Светодиоды, служащие источником света в светодиодных светильниках, представляют собой устройство, в центре которого размещен полупроводниковый кристалл. Этот кристалл состоит из двух материалов: n-типа, обогащенного отрицательными носителями заряда (электронами) и материала p-типа, с положительными носителями заряда. При подаче электрического тока происходит переход частиц из одного полупроводника в другой, в результате чего создаются частицы света — фотоны.

У светодиодных светильников очень высокий КПД — не меньше 90 %, в то время как ртутные и натриевые лампы лишь 50–70 % потребляемой энергии преобразуют в видимый свет. Кроме этого, светодиодные светильники обладают рядом преимуществ, недостижимых для ламп ДРЛ и ДНаТ:

  • устойчивость к перепадам напряжения;
  • способность работать в широком диапазоне температур (-60… +55 ºС);
  • стабильный световой поток на протяжении всего срока службы;
  • высокая контрастность и более высокий индекс цветопередачи (Ra 80). Спектр излучения светодиодов безопасен для зрения человека, практически не имеет УФ и ИК-излучений;
  • отсутствие мерцаний;
  • экологичность: в светодиодных лампах нет токсичных материалов (ртути, свинца).

Итак, сравним

Мы сравнили уличные светодиодные светильники «ЛУЧ» мощностью 90, 150, 200 Вт и лампы ДРЛ, ДНаТ по четырем параметрам:

  • активная мощность, которая говорит об энергозатратах при использовании светильника;
  • световой поток в начале эксплуатации;
  • световой поток спустя три месяца эксплуатации;
  • срок службы лампы.

Отправная точка нашего сравнения — относительно одинаковый световой поток в начале эксплуатации. Как мы видим, уже через три месяца у ламп ДРЛ и ДНаТ он снижается на 30 и 15 %, у светодиодных светильников остается на том же уровне.

Активная мощность меньше всего у светильников на светодиодах: в 2–4 раза ниже, чем у газоразрядных конкурентов. А это значит, что потребители несут в 2–4 раза меньше затрат на электроэнергию.

По сроку службы в нашем рейтинге снова лидируют светодиодные светильники, ведь они служат в 3–6 раз дольше светильников с лампами ДРЛ и ДНаТ. И, как мы помним, сохраняют световой поток во время эксплуатации до 95 % от изначального.

Сегодня по техническим параметрам и безопасности светодиодным светильникам нет равных. Основное препятствие на пути лидерства в освещении — высокая цена. Но высокой она кажется лишь на первый взгляд. Светодиодные светильники служат много лет, и спустя год-два после начала использования полностью оправдывают свою стоимость.

Сравнение ламп ДРЛ, ДНаТ и светодиодных

ХарактеристикиДРЛ-250ДНаТ-150ЛУЧ-220-СТ 90
Активная мощность280 Вт170 Вт90 Вт
Световой поток10 500 Лм12 000 Лм12 600 Лм
Световой поток через 3 месяца эксплуатации7500 Лм10 200 Лм12 600 Лм
Срок службы лампы12 000 часов10 000 часов60 000 часов
ХарактеристикиДРЛ-400ДНаТ-250ЛУЧ-220-СТ 150
Активная мощность460 Вт300 Вт150 Вт
Световой поток19 200 Лм22 400 Лм21 000 Лм
Световой поток через 3 месяца эксплуатации13 440 Лм19 040 Лм21 000 Лм
Срок службы лампы15 000 часов15 000 часов60 000 часов
ХарактеристикиДРЛ-700ДНаТ-400ЛУЧ-220-СТ 200
Активная мощность820 Вт470 Вт200 Вт
Световой поток32 800 Лм38 400 Лм29 700 Лм
Световой поток через 3 месяца22 960 Лм32 640 Лм29 700 Лм
Срок службы лампы20 000 часов15 000 часов60 000 часов

Уличные светодиодные светильники «ЛУЧ» — оптимальная замена светильников с газоразрядными лампами. Выбирайте из каталога светильники мощностью от 60 до 200 Вт и экономьте уже сейчас!

Фара

Конструкция фары в целом подобна обычным модулям. Однако чтобы удовлетворить ограничениям в отношении ослепления других участников движения, в данной случае необходимо выдерживать большую точность параметров, что влечет дополнительные издержки производства.

Источником света в газоразрядной лампе является электрическая дуга. Поперечник колбы газоразрядной лампы всего 10 мм. Колба изготовлена из кварцевого стекла, в ней расположены два электрода, промежуток между которыми составляет 4 мм. Расстояние между концом электрода и опорной поверхностью лампы составляет 25 мм, это соответствует размерам стандартной галогенной лампы.

При комнатной температуре лампа содержит смесь ртути, солей различных металлов и ксенона под давлением. Когда лампа включается, ксенон сразу начинает светиться и испаряет ртуть и металлические соли. Высокая световая эффективность возникает за счет смеси паров металлов. Ртуть производит большую часть света, а металлические соли определяют цветовой спектр. На рисунке показан спектр излучения, создаваемого газоразрядной лампой в сравнении со спектром галогенной лампы. В таблице приведены различия между газоразрядной (DI) и галогенной (HI) лампами (цифры приблизительные и даны только для сравнения).

Таблица. Сравнение HI и DI ламп

Тип лампыВидимый свет, %Тепло, %УФ излучение, %
HI8921
DI285814

Высокий уровень ультрафиолетового излучения от газоразрядной лампы означает, что по соображениям безопасности требуется использовать специальные фильтры. На рисунке еще раз показана светимость газоразрядной лампы в сравнении с галогенной. Отдача газоразрядной лампы примерно в три раза больше.

Чтобы зажечь газоразрядную лампу необходимо последовательно пройти следующие четыре стадии:

  1. Воспламенение — высокий импульс напряжения создает искру между электродами, что вызывает ионизацию промежутка, — создается трубчатая дорожка разряда.
  2. Мгновенное свечение — ток, текущий по дорожке разряда, возбуждает ксенон, который далее испускает свет в количестве 20% от максимального значения лампы.
  3. Разгон — лампа теперь работает при возрастающей мощности, температура быстро повышается, ртуть и металлические соли испаряются. Давление в лампе увеличивается по мере увеличения светового потока, и происходит смешение спектра от синего цвета к белому.
  4. Непрерывный режим — теперь лампа работает при стабилизированной мощности около 35 Вт. Такой режим гарантирует, что поддерживается горение дуги и световой выходной поток не мерцает. К этому моменту достигается световой поток порядка 28 000 лм и цветовая температура 4500 °К.

Чтобы управлять описанными выше стадиями работы лампы, требуется балластная система. Для создания дуги необходимо высокое напряжение, которое может достигать 20 кВ. В течение разгона балластная система ограничивает ток, а затем ограничивает также и напряжение. Контроль потребляемой мощности позволяет световому потоку расти очень быстро, но предохраняет от превышения заданного уровня, которое уменьшило бы срок службы лампы. Балластная система также включает в себя схемы подавления радиоизлучения и схемы обеспечения безопасности.

Полный модуль фары может быть сконструирован различными способами, поскольку газоразрядная лампа производит в 2,5 раза больший световой поток при температуре, вдвое меньшей, чем у обычных галогенных ламп. Это предоставляет большие возможности в моделировании фары и, следовательно, в дизайне передней части автомобиля.

Если система GDL используется как луч ближнего света, требуются модули фар с автоматическим выравниванием потока света из-за высоких интенсивностей свечения. Однако использование её для дальнего света может создавать проблему вследствие природы процесса включения и выключения лампы. Подходящим решением может быть система GDL с непрерывным лучом ближнего света, снабженная дополнительно обычными фарами дальнего света (система с четырьмя фарами).

Tags: Свет, Фары

Вперед Устройство двигателей тракторов МТЗ: МТЗ-80, МТЗ-82 и МТЗ-80Л, МТЗ-82Л

Все записи

Назад Схемы освещения

Устройство и характеристики разрядных ламп

Все основные детали лампы заключены в стеклянную колбу. Здесь происходит разряд электрических частиц. Внутри могут находиться как пары натрия или ртути, так и какой-либо из инертных газов.

В качестве газового наполнения применяют такие варианты, как аргон, ксенон, неон, криптон. Более популярны изделия, наполненные парообразной ртутью.

Основные узлы газоразрядной лампы это: конденсатор (1), стабилизатор тока (2), транзисторы переключающие (3), устройство подавления помех (4), транзистор (5)Конденсатор отвечает за работу без мигания. Транзистор владеет положительным температурным коэффициентом, который обеспечивает мгновенный запуск ГРЛ без мерцания. Работа внутренней конструкции начинается после того, как в газоразрядной трубке пройдет генерация электрического поля.

В процессе в газе появляются свободные электроны. Соударяясь с атомами металла, они его ионизируют. При переходе отдельных из них, появляется избыточная энергия, порождающая источники свечения — фотоны.

Электрод, являющийся источником свечения, находится в центре ГРЛ. Всю систему объединяет цоколь.

Лампа может излучать разные световые оттенки, которые может видеть человек — от ультрафиолетовых до инфракрасных. Чтобы это стало возможным, внутреннюю часть колбы покрывают люминесцентным раствором.

История развития электростатической ионизации газов

Принято считать годом рождения газоразрядных ламп 1675. Однажды ночью французский учёный Жан-Феликс Пикар заметил свечение ртутного барометра, когда переносил его из обсерватории в порт святого Майкла. Чтобы читатели представили явление, нужно учесть особенности конструкции. В ртутном барометре имеется трубка, запаянная с конца. Вдобавок наличествует чаша. Оба предмета заполнены металлической ртутью.

Для определения давления трубку резко переворачивают и опускают в чашу. Тогда ртуть под действием земного тяготения стекает вниз, образуя выше себя вакуум. В результате запаянный конец трубки остаётся полым, и протяжённость пустого пространства зависит от атмосферного давления, которое, действуя на ртуть в чаше, призвано уравновесить силу тяжести.

Барометр Пикара

При транспортировке барометра Пикар спешил и сильно растряс прибор. В результате произошла электризация стекла трением о ртуть, и статический заряд вызвал ионизацию металлических паров. Процесс сильно облегчался, благодаря созданному вакууму. Пары ртути и сегодня используются в отдельных газоразрядных источниках света. К примеру, ультрафиолетовая составляющая свечения активизирует люминофор лампы дневного света.

Пикар не смог объяснить обнаруженного явления, но немедленно доложил о произошедшем в научных кругах. Позднее изучением занялся известный швейцарский математик Иоганн Бернулли. Ему задача оказалась также не по зубам, но сей учёный муж активно практиковал опыт со свечением, дал представление французской академии наук. В 1700 году на демонстрации явление лицезрел английский механик, по совместительству учёный, Фрэнсис Хоксби. На базе Королевского научного общества Британии Хоксби принимается активно ставить опыты.

За основу решающего эксперимента Хоксби берет модель электростатического генератора Герике (1660 год). По описаниям машина представляла солидных размеров шар из серы, вращающийся на железном стержне. Трением о ладони оператора объект приобретал при вращении значительный заряд. Дальнейший ход мыслей Хоксби понятен. В инструкции Герике фигурировало предложение залить серу в стеклянный шар, потом разбить. Английский учёный пропустил указанный шаг. К сожалению, неизвестно, имели ли ранние работы (к примеру, трактат Гильберта 1600 года) представление об электризации стекла, но Хоксби выдвинул соответствующее предположение.

Модель электростатического генератора Герике

В результате экспериментальная установка содержала вместо серного шара стеклянный с каплями ртути на дне, а внутри по возможности создали вакуум. При вращении сферы на железном стержне и электризации путём трения ладонями наблюдалось свечение, чтобы читать книгу в непосредственной близости. В 1705 году английское научное общество продемонстрировало первую газоразрядную лампу. Предоставлялось верное объяснение, что к обнаруженному явлению причастны пары ртути. Потом – ход работ замер на целый век. Не находилось практического применения вновь открытому явлению.

Отличительные черты ламп из ртути

Главным плюсом ртутных устройств считается высокая светоотдача. Чаще всего данный параметр находится на отметки в 55 лм/Вт. При всём этом прибор может прослужить вам довольно долгое время. Средний показатель производительности находится на уровне в 10 тысяч часов. Размеры и компактность у этих устройств на высоте, что считается неоспоримым достоинством. Кроме прочего, нужно указать на высокую температурную устойчивость ртутных моделей. Но при условиях сильного мороза их применять категорически запрещено. К минусам данной модели можно отнести плохую передачу оттенков и цветокоррекции, а связано это с малым сектором лучей. В конечном счёте при таком освещении человеку будет довольно сложно правильно определить цвет окружающих его предметов. Ещё один минус — это ограниченные возможности ртутной лампы.

К несчастью, процесс работы лампа совершает лишь на переменном токе. Включать её можно лишь при помощи балластного дросселя. Время разгорания довольно длительно и равняется в среднем семи минутам. При всём этом включение лампы заново не изменит времени разогрева, а скорее, наоборот, усложнит. Также ртутная модель обладает повышенной пульсацией светового потока, и в этом плане она сравнительно уступает моделям с люминесцентными составляющими. Также стоит отметить, что поток света с прошествием времени у прибора начнёт снижаться.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий