Как соорудить лопасти для ветрогенератора своими руками: примеры самостоятельного изготовления лопастей для ветряка

Как рассчитать лопасти?

Вычислить диаметр ветряка для определенной мощности можно следующим образом:

  1. Окружность пропеллера ветрогенератора с определенной мощностью, малыми оборотами и силой ветра, при которых происходит подача нужного напряжения, числом лопастей внести в квадрат.
  2. Высчитать площадь данного квадрата.
  3. Разделить площадь получившегося квадрата на мощность конструкции в ватах.
  4. Перемножить результат с требуемой мощностью в ватах.
  5. Под этот результат нужно подбирать площадь квадрата, варьируя размеры квадрата до тех пор, пока размер квадрата не достигнет четырех.
  6. В этот квадрат вписать окружность пропеллера ветрогенератора.

После этого нетрудно будет узнать другие показатели, например, диаметр.

Таким же способом можно рассчитать размеры лопастей.

Расчет максимально приемлемой формы лопастей достаточно мудреный, кустарному мастеру сложно его выполнить, поэтому можно использовать готовые шаблоны, созданные узкими специалистами.

Шаблон лопасти из ПВХ трубы 160 мм в диаметре:

Шаблон лопасти из алюминия:

Можно попробовать самостоятельно определить показатели лопастей ветряного устройства.

Быстроходность ветряного колеса являет собой соотношение круговой скорости края лопасти и скорости ветра, ее можно вычислить по формуле:

На мощность ветряного двигателя оказывают влияние диаметр колеса, форма лопастей, расположение их относительно потока воздуха, скорости ветра.

Ее можно найти по формуле:

При использовании лопастей обтекаемой формы коэффициент использования ветра не выше 0,5. При слабо обтекаемых лопастях – 0,3.

Как рассчитать правильно

На КПД ветрового генератора оказывает значительное влияние аэродинамические характеристики устанавливаемых на него лопастей, поэтому перед их изготовлением, производятся специальные расчеты. В результате проведения таких расчетов, изделия проверяются на соответствие полученных результатов требуемым параметрам и прочим требованиям, предъявляемым к ним.

Ветер оказывает воздействие на лопасти генератора и эта сила, или иными словами – напор, действует по направлению воздушного потока. В свою очередь, перпендикулярно к силе напора действует подъемная сила, именно которая и работает в ветровых генераторах с горизонтальной осью вращения (показано на ниже приведенной схеме).

При расчете геометрических размеров лопасти определяется ширина ее хорды и угол ее установки, на схеме β, на всей протяженности элемента устройства.

При проведении расчетов используется метод конечных элементов, суть которого заключается в том, что лопасть рассматривается как совокупность отдельных элементов, входящих в ее состав.

Сила напора ветровых потоков направлена против движения лопасти (на схеме названа «истинным ветром») и на диаграмме разложена на вектора — «скорость ветра» и «окружная скорость». Окружная скорость обеспечивает движение лопастей в плоскости вращения, при этом подъемная сила оказывает воздействие именно в этом направлении.

Сила напора и подъемная сила, определяют производительность ветрового генератора (формула приведена в разделе «Основные характеристики») и зависят от коэффициента подъемной силы, а также коэффициента лобового сопротивления. Кроме этого, данные коэффициенты, находятся в прямой зависимости от геометрического профиля лопасти и угла между линией ее хорды и направлением воздушного потока.

Линия хорды– самая длинная линия при рассмотрении ее сечения, от носка лопасти до ее задней кромки.

Угол между линией хорды и направлением воздушного потока (набегающий поток) называется углом атаки (угол α).

Коэффициенты подъемной силы и лобового сопротивления определены экспериментальным путем и занесены в специальные журналы (атласы). График зависимости подъемной силы от угла атаки (формы лопасти), выглядит следующим образом:

Наилучшие аэродинамические показатели имеют подобные элементы, обладающие углом α (углом атаки) равным значению – 5.

Еще одним важным параметром, при расположении элементов, является угол их установки (угол β), который определяется по формуле:

где:

R – радиус наружного круга вращения;

r – радиус вращения, без учета комля и и прикомлевой части;

Z – быстроходность кончика данного элемента устройства.

Ширина лопасти (размер «b») это также важный параметр, требующий соответствующего расчета

Наиболее важной частью является наружная, что обусловлено кольцом ветра и площадью охвата, с которым эта часть устройства работает

Расчет выполняется по формуле:

где:

R – наружный радиус вращения;

r – внутренний радиус вращения, без учета комля и и прикомлевой части;

Z – быстроходность кончика.

i – количество лопастей.

Из данной формулы видно, что:

  • Ширина обратно пропорциональна внутреннему радиусу ее вращения, и что, в свою очередь говорит о том, что наиболее оптимальной формой, является форма треугольника;
  • Ветровой генератор с малым количеством лопастей должен иметь более широкие лопасти;
  • Увеличение быстроходности снижает их ширину.

Быстроходность с показателем «5», является наиболее оптимальной, что позволяет снизить потери установки при максимальном количестве лопастей. На приведенном ниже рисунке, указано, как количество однотипных элементов, установленных на ветровом генераторе, влияет на его быстроходность:

Высокая быстроходность позволяет увеличить КПД ветровых генераторов, при этом негативными факторами, при эксплуатации подобных устройств, будут:

  • Повышенный уровень производимого шума;
  • Вибрация, при использовании одной или двух лопастей;
  • Повышенная эрозия кромок;
  • Трудности старта при малых потоках ветра.

Для снижения уровня шума кончики лопастей делают заостренной формы, а для облегчения старта, основания изготавливаются несколько шире, чем размер «b».

Как функционирует генератор: принцип превращения вращательного движения в электрическую энергию?

Ветер приводит в круговое движение лопасти, которые обеспечивают вращение ветроколеса. Оно в свою очередь передает движение на турбину. Воздействуя на мультипликатор, она начинает вырабатывать электрическую энергию в пропорциональном соотношении к силе воздействующего на лопасть ветра. Чем больше эта сила, тем большее количество электрической энергии вырабатывается.

При этом нужно учесть, что наибольшим КПД обладают генераторы, у которых нет мультипликатора. Он ускоряет движение оси, но при этом сам потребляет энергию. Но в определенной местности, где потоки ветра слабые, их нужно ставить, даже жертвуя частью производительности.

Принцип работы и виды ветряного генератора

Самостоятельно сделать ветряк можно только при понимании его устройства. Прообраз этого агрегата — старинная ветряная мельница. При давлении потоков воздуха на ее крылья в движение приходил вал, который и передавал вращающий момент на оборудование мельницы.

В ветряных установках для производства электричества применяется тот же принцип использования энергии ветра для вращения ротора:

  1. Движение лопастей при воздействии ветра заставляет вращаться первичный вал с редуктором. Крутящий момент передается на вторичный вал (ротор) генератора, снабженный 12 магнитами. В результате его вращения в статорном кольце возникает переменный ток.
  2. Эта разновидность электроэнергии не может зарядить аккумуляторы без специального устройства — контроллера (выпрямителя). Прибор переводит переменный ток в постоянный, позволяя аккумулировать его, чтобы бытовая техника могла работать без перебоев. Контроллер выполняет и другую функцию: вовремя прекращает зарядку АКБ, а избыток вырабатываемой ветряком энергии переводит в агрегаты, потребляющие большое ее количество (например, к ТЭНам для отопления дома)
  3. Чтобы обеспечить подачу напряжения в 220 В, ток подается с аккумуляторов в инвертор, а затем уже поступает к точкам потребления электроэнергии.

Чтобы лопасти всегда занимали лучшее положение для взаимодействия с ветром, на крыльчатых устройствах устанавливают хвост, который позволяет повернуть пропеллер к ветру. Заводские модели ветряков имеют тормозные устройства или дополнительные схемы для складывания хвоста либо увода лопастей от ударов ветра при неблагоприятной погоде.

Выделяют несколько видов ветрогенераторов, классифицируя их по количеству и материалу лопастей или шагу винта. Но основное деление происходит по расположению оси или первичного вала:

  1. Горизонтальный тип подразумевает расположение вала параллельно поверхности земли. Такие генераторы называют крыльчатыми.
  2. У вертикальных ветряков ось расположена перпендикулярно горизонту, а плоскости расположены вокруг нее. Вертикальные генераторы могут носить наименование ортогональных или карусельных.

Независимо от расположения оси вращения принцип работы агрегата остается одинаковым.

Модели ветряков могут иметь пропеллер либо ветроколесо из 2, 3 или нескольких лопастей. Считается, что многолопастные устройства способны вырабатывать ток при небольшом ветре, а пропеллерам с 2-3 крыльями необходим поток воздуха большей силы

При выборе модели необходимо учесть и важное правило о том, что каждая лопасть создает сопротивление потоку ветра и уменьшает скорость вращения, поэтому раскрутить многолопастное колесо до рабочей скорости достаточно сложно

Среди разновидностей ветряков встречаются парусные и жесткие. Эти наименования обозначают материал, из которого изготовлены крылья. При самостоятельной сборке парусный тип будет проще и экономичнее, но лопасти из пластичного материала (ткани, пленки и пр.) не отличаются прочностью и износостойкостью.

Промышленные ветрогенераторы: образец для подражания

Не секрет, что альтернативная энергетика действительно позволяет получать электричество буквально из ветра. В странах Европы промышленные ветрогенераторы занимают огромные площади и работают автономно на благо человека.

Они имеют огромные размеры, расположены на открытых всем ветрам участках, возвышаются над деревьями и местными предметами.

А еще ветряки установлены на удалении друг от друга. Поэтому случайные поломки и повреждения одного не могут причинить вреда соседним конструкциям.

Эти принципы создания ветровых генераторов будем брать за основу разработки самодельных устройств. Они созданы по научным разработкам,опробованы уже длительной эксплуатацией, эффективно работают.

Начнем с анализа характеристик местности, на которой планируем создавать ветряную электростанцию.

Средние цены

Стоимость лопастей зависит от мощности ветрового генератора, на который они устанавливаются, материала из которого они изготовлены, страны и бренда производителя, а также места их приобретения.

Так стоимость комплекта лопастей для ветровых генераторов марки «Exmork» (Zonhan) производства КНР, в зависимости от мощности устройства, составляет:

  • Для Р=1,0 кВт – от 13000,00 рублей;
  • Для Р=1,5 кВт – от 22000,00 рублей;
  • Для Р=2,0 кВт – от 23000,00 рублей.
  • Для Р=3,0 кВт – от 34000,00 рублей.

Лопасти для генераторов типа «РВ» (Россия), в зависимости от геометрических размеров, реализуются по следующим ценам:

  • 1,2 метра – от 4500,00 рублей;
  • 2,6 метра – от 12000,00 рублей;
  • 3,0 метра – от 15000,00 рублей;
  • 4,0 метра – от 29000,00 рублей;
  • 6,0 метров – от 75000,00 рублей;
  • 7,5 метров – 135000,00 рублей.

Все ли ветрогенераторы одинаковы?

Несмотря на то, что принцип работы всех ветряков примерно одинаков, существует множество классификаций этих источников энергии. Если рассматривать именно устройства для дома, то наибольшее значение имеют материалы, используемые для изготовления лопастей, их количество, направление оси вращения по отношению к земной поверхности, а также шаговый признак винта. Рассмотрим коротко каждый из видов. Большинство существующих на сегодняшний день ВЭУ (ветроэнергетическая установка) можно отнести к одно-, двух-, трех- или многолопастными. Небольшая часть наиболее современных устройств лопастей не содержит вообще, а ветер в них улавливает так называемый «парус», с виду напоминающий тарелку. За ним располагаются поршни, приводящие в работу гидросистему, а уже она и вырабатывает электрический ток. КПД таких установок выше, чем у всех остальных. В отношении лопастных систем тенденция такова: чем меньше лопастей, тем больше энергии вырабатывает генератор.

Разновидности ветрогенераторов

Ветрогенераторы, как уже отмечалось выше, могут отличаться не только количеством лопастей, но и материалами, которые применяются для их изготовления. Лопастная система может быть жесткой, изготовленной из металлов или стеклопластика, а может — парусной, более дешевой, но менее практичной. Если сравнивать ВЭУ по шаговому признаку винта, то более надежными являются устройства, у которых шаг фиксирован. Существуют ветряки и с изменяемым шагом, способные менять скорость вращения, но их громоздкая конструкция влечет за собой дополнительные расходы на установку и обслуживание такой системы.

Наиболее разнообразны конструкции ветряков, если рассматривать их с точки зрения направления оси вращения относительно земли.

Устройства, лопасти которых вращаются относительно вертикальной оси, в свою очередь, можно разделить на несколько типов.

  1. Ветрогенераторы Савониуса представляют собой несколько половинок полых внутри цилиндров, посаженных на вертикальную ось. Основное их преимущество — способность вращаться независимо от скорости и направления ветра. Существенный недостаток заключается в способности использовать энергию ветра лишь на треть.
  2. Ротор Дарье — это система из двух или более лопастей, представляющих собой плоские пластины. Такое устройство несложно изготовить, но получить много энергии с его помощью не получится. Кроме того, для запуска такого ротора нужен дополнительный механизм.
  3. Геликоидный ротор, благодаря специально закрученным лопастям, обладает равномерным вращением. Устройство долговечно, но, в силу сложности конструкции, дорого.
  4. Многолопастные ветрогенераторы с вертикальной осью вращения — самый эффективный вариант в своей группе.

Ветряки с горизонтальной осью вращения также имеют свои достоинства и недостатки. Главный их плюс — высокий КПД. Среди недостатков таких конструкций стоит отметить необходимость улавливать направление ветра при помощи флюгера и изменение эффективности в зависимости от направления ветра. В связи с этим горизонтальные установки наиболее уместны на открытой местности. Там же, где лопасти будут заслонены от ветра строениями, деревьями или, например, холмами, лучше установить ВЭУ другой конструкции.

К тому же, такой ветрогенератор дорог, а появление его в окрестностях точно не вызовет большого восторга у ваших соседей. Лопасти его запросто могут сбить летящую птицу и сильно шумят.

Какие еще бывают ветроэнергетические установки? Ну конечно же, наши, отечественные и импортные. Среди последних лидируют европейские, китайские и североамериканские агрегаты. Вместе с тем, наличие на рынке отечественных ветрогенераторов не может не радовать.

Свежие записи

Бензопила или электропила — что выбрать для сада? 4 ошибки при выращивании томатов в горшках, которые совершают почти все хозяйки Секреты выращивания рассады от японцев, которые очень трепетно относятся к земле

Цена таких устройств определяется, в первую очередь, их мощностью и наличием дополнительных элементов, например, солнечных батарей и колеблется в очень широких пределах — от нескольких десятков до нескольких сотен тысяч рублей.

Ветроэлектрическая установка роторного типа

Разберёмся, как смастерить своими руками простой ветряк с вертикальной осью вращения роторного типа.

Такая модель вполне может обеспечить потребности в электроэнергии садового домика, разнообразных хозяйственных построек, а также подсветить в темное время суток придомовую территорию и садовые дорожки.

Лопасти этой установки роторного типа с вертикальной осью вращения явно выполнены из элементов, вырезанных из металлической бочки

Наша цель – изготовление ветряка, предельная мощность которого составит 1,5 кВт. Для этого нам понадобятся следующие элементы и материалы:

  • автомобильный генератор на 12 V;
  • гелиевый или кислотный аккумулятор на 12 V;
  • полугерметичный выключатель разновидности «кнопка» на 12 V;
  • преобразователь 700 W – 1500 W и 12V – 220V;
  • ведро, кастрюля большого объёма или другая вместительная ёмкость из нержавеющей стали или из алюминия;
  • автомобильное реле контрольной лампы заряда или зарядки аккумулятора;
  • автомобильный вольтметр (можно любой);
  • болты с гайками и шайбами;
  • провода сечением 4 квадратных мм и 2,5 квадратных мм;
  • два хомута для закрепления генератора на мачте.

В процессе выполнения работ нам будут нужны болгарка или ножницы по металлу, строительный карандаш или маркер, рулетка, кусачки, сверло, дрель, ключи и отвертка.

Стартовый этап изготовления установки

Изготовление самодельного ветряка начинаем с того, что возьмем большую металлическую ёмкость цилиндрической формы. Обычно для этой цели используют старую выварку, ведро или кастрюлю. Именно она будет основой для нашего будущего ВЭУ.

С помощью рулетки и строительного карандаша (маркера) нанесем разметку: поделим нашу ёмкость на четыре одинаковые части.

Выполняя разрезы в соответствии с теми указаниями, которые содержатся в тексте, ни в коем случае не прорезайте металл до конца

Металл придется резать. Для этого можно использовать болгарку. Её не применяют для разрезания ёмкости из оцинкованной стали или окрашенной жести, потому что металл такого вида обязательно перегреется.

Для таких случаев лучше использовать ножницы. Вырезаем лопасти, но не прорезаем их до самого конца.

Теперь, одновременно с продолжением работ над ёмкостью, мы будем переделывать шкив генератора.

В днище бывшей кастрюли и в шкиве нужно наметить и просверлить отверстия для болтов. К работам на этой стадии нужно отнестись максимально внимательно: все отверстия должны располагаться симметрично, чтобы в ходе вращения установки не возникло дисбаланса.

Так выглядят лопасти ещё одной конструкции с вертикальной осью вращения. Каждая лопасть изготавливается отдельно, а потом монтируется в общее устройство

Отгибаем лопасти так, чтобы они не слишком торчали. Когда мы выполняем эту часть работы, обязательно учитываем, в какую сторону будет вращаться генератор.

Обычно направление его вращения ориентировано по ходу часовой стрелке. Угол изгиба лопастей влияет на площадь воздействия воздушных потоков и на скорость вращения пропеллера.

Теперь нужно закрепить на шкиве ведро с подготовленными к работе лопастями. Устанавливаем генератор на мачту, зафиксировав его при этом хомутами. Осталось присоединить провода и собрать цепь.

Подготовьтесь записать схему соединения, цвета проводов и маркировку контактов. Позже она вам непременно пригодится. Фиксируем провода на мачте устройства.

Этот рисунок содержит подробные рекомендации по сборке общей конструкции и общий вид устройства уже в собранном и готовом к эксплуатации виде

Для подсоединения аккумулятора нужно применить провода сечением 4 мм². Достаточно взять отрезок протяженностью 1 метр. Этого хватит.

А для того чтобы подключить к сети нагрузку, в состав которой входят, например, осветительные и электрические приборы, достаточно проводов с сечением 2,5 мм². Устанавливаем инвертер (преобразователь). Для этого тоже будет нужен провод 4 мм².

Преимущества и недостатки роторной модели ветряка

Если вы сделали всё аккуратно и последовательно, то этот ветрогенератор будет успешно работать. При этом никаких проблем в ходе его эксплуатации не возникнет.

Если использовать преобразователь 1000 W и аккумулятор 75А, это установка обеспечит электричеством и приборы видеонаблюдения, и охранную сигнализацию и даже уличное освещение.

Достоинства этой модели таковы:

  • экономична;
  • элементы легко можно поменять на новые или отремонтировать;
  • особые условия для функционирования не нужны;
  • надежная в эксплуатации;
  • обеспечивает полный акустический комфорт.

Недостатки тоже имеются, но их не так уж много: производительность у этого устройства не слишком высока, и у него имеется значительная зависимость от внезапных порывов ветра. Воздушные потоки могут попросту сорвать импровизированный пропеллер.

Расчет мультипликатора

Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.

Для самодельной конструкции наиболее оптимальное решение — это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.

При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.

Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.

Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А — согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов — для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа — без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.

Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).

А.Ф. Онипко. Изобретатель придумал новую эффективную ветроустановку

Многие любители свободной энергии, которые интересуются природными ресурсами для получения электричества и других ресурсов, интересуется ветрогенератором, который создал украинский физик Алексей Федорович Онипко. Патент патент UA 102689.Изобретение получило широкую известность в европейских странах, США и Канаде. Неудивительно, что китайские производители исследуют возможности уникального генератора.

Изобретатель работает в академии наук Украины. Это организация не принадлежит к разряду государственных, поэтому со стороны государства нет финансирования. Большая часть инженерных идей разрабатываются с опорой на вероятного заказчика. Одним из таких важных изобретение является ветряк, оснащенный ротором особой формы, созданный лабораторией, работающей под руководством А.Ф. Онипко.

Готовые китайские генераторы и другие изобретения в этом китайском магазине

Обратите внимание на ветрогенератор с вертикальным расположением лопастей в том-же магазине

Какая форма лопасти является оптимальной

Один из главных элементов ветрогенератора – комплект лопастей. Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

  • вес;
  • размер;
  • форма;
  • материал;
  • количество.

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако, это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота. Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы. Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако, ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой — пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

Фиг. А:

  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.

Фиг. Б, вид сверху:

  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.

Фиг. Г, токосъемник:

  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Итак, где нас ждут «спотыки»?

Лопасти

Профилировка и крутка лопасти ВСУ

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли

Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Ветряные электростанции

Существует множество вариантов конструкции ветрогенераторов, для классификации которых есть базовые признаки:

  • расположение вращательной оси: вертикальное и горизонтальное;
  • количество лопастей: чаще от 1 до 6, но бывают варианты и с большим количеством;
  • тип вращательной лопасти: в виде крыла или паруса;
  • материал для изготовления лопасти: дерево, алюминий, ПВХ;
  • конструкция винтового колеса: с фиксированным или переменным шагом.

ЧИТАТЬ ДАЛЕЕ: Отделка фасада дома штукатуркой своими руками технология нанесения облицовки по сетке и кирпичу подробные фото

Продуктивность работы ветрогенератора в большей степени зависит от лопастей: от того, насколько правильно рассчитаны их размеры и количество, и удачно ли подобран материал для изготовления.

Сделать лопасти своими руками не составит труда, но перед тем, как начать работу, нужно изучить некоторые факты:

  1. Чем длиннее лопасти, тем легче они поддаются движению ветра, даже самого слабого. Однако большая длина будет замедлять скорость вращения ветряного колеса.
  2. На чуткость ветряного колеса влияет и количество лопастей: чем их больше, тем проще будет запускаться вращение. При этом показатели мощности и скорости будут снижаться, а значит, такое устройство непригодно для выработки электроэнергии, но отлично подойдет для подъемных работ.
  3. От диаметра и скорости вращения ветряного колеса зависит уровень шума, исходящего от устройства. Это нужно учитывать при установке ветрогенератора вблизи жилых домов.
  4. Большее количество энергии от ветра можно получить, установив ветряк как можно выше над уровнем земли (оптимально от 6 до 15 м). Поэтому зачастую установка происходит на крыше здания или на высокой мачте.

Готовые лопасти для ветрогенератора

Ветрогенератор или ветроэлектрическая установка (ВЭУ) – это устройство, которое используется в целях преобразования кинетической энергии потока ветра в механическую энергию. Полученная механическая энергия вращает ротор и преобразуется в необходимый нам электрический вид.

Принцип действия и устройство кинетического ветряка подробно описаны в статье, с которой мы рекомендуем ознакомиться.

В состав ВЭУ входят:

  • лопасти, образующие пропеллер,
  • вращающийся ротор турбины,
  • ось генератора и сам генератор,
  • инвертор, который преобразует переменный ток в постоянный, использующийся для зарядки батарей,
  • аккумулятор.


Подробное устройство ветрогенератора с горизонтальной осью вращения позволяет хорошо представить себе, какие элементы способствуют превращению кинетической энергии в механическую, а затем в электрическую

В целом, принцип работы ветрогенератора любого типа и конструкции заключается в следующем: в процессе вращения возникает три вида силового воздействия на лопасти: тормозящее, импульсное и подъёмное.


Эта схема работы ветроустановки позволяет понять, что происходит с электроэнергией, произведенной работой ветрогенератора: часть её аккумулируется, а другая – потребляется

Две последние силы преодолевают тормозящую силу и приводят в движение маховик. На неподвижной части генератора ротор формирует магнитное поле, чтобы электрический ток пошел по проводам.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий