Промежуточное реле: как работает, маркировка и виды, нюансы регулировки и подключения

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Практическое подключение реле

Перед началом работ обязательно отключаем напряжение в электро цепи и проверяем с помощью тестера наличие потенциала 220 В на проводах, с которыми будем работать.

Подключите кабель питания ( 2 ) к разъему фазного провода.

Между коробом и реле проведем двухпроводный кабель. Коричневый провод подключим к разъему, чтобы могли нажать внешнюю кнопку.

Второй провод — синий, на нем будет потенциал. Подключим его к управляющему контакту ( A2 ) реле.

Следующий шаг — соединить зажим ( A1 ) с разъемом нейтрального провода, а также подключить провода к лампе. Проводники и защита нейтрали подключаются к соответствующим разъемам, а коричневый провод (фаза) к клемме ( 1 ) реле так, чтоб оно работало получая потенциал, подаваемый на зажим ( 2 ).

Соединение кнопки классическое. Подключите шнур питания к клемме ( L ) и к клемме ( 2 ) провода, с помощью которого передадим короткие импульсы управления реле.

Затем присоединяем к схеме еще одну кнопку. Для этого проведем двухпроводный кабель между двумя коробками.

Во второй можем установить кнопку звонка с подсветкой чтоб видеть изменения потенциала на ней. Метод подключения аналогичен. Соединяем провода по цвету также, как и в первой кнопке.

Всё готово — понажимайте и проверьте работу тестовой системы.

Основные виды ЭМР

Реле ЭМР принято классифицировать по нескольким параметрам. Исходя из особенностей конструкции, разделяют контактные и бесконтактные устройства. В первом случае речь идёт об устройствах, которые при срабатывании воздействуют контактной группой на силовую цепь, обеспечивая соединение или разрыв в ней. Во втором — аналогичный результат достигается изменением одного из параметров (напряжения, силы тока, ёмкости, сопротивления).

В зависимости от способа присоединения оборудование разделяют на следующие виды.

  • Первичное (устройство подключается непосредственно в цепи управления).
  • Вторичное, предусматривающее необходимость присоединения к сети через измерительный трансформатор тока.
  • Промежуточное, работающее от исполнительных органов других релейных устройств. Такой принцип действия позволяет обеспечить размножение сигнала или его усиление.

В зависимости от вида напряжения на входе выпускаются устройства постоянного и переменного тока. Первый вариант в свою очередь можно разделить на поляризованные и нейтральные. Его ключевое отличие заключается в чувствительности устройства к полярности источника питания (в зависимости от этого якорь меняет направление движения якоря).

Среди недостатков оборудования постоянного тока выделяют сравнительно высокую стоимость и необходимость использования в комплексе с блоком питания. Подобных проблем при эксплуатации ЭМР переменного тока не возникает, но их существенным «минусом» станет вибрация во время работы и пониженная чувствительность.

Реле тока

Реле тока предназначено для контроля этого параметра в цепях электропотребителей. Возможно подключение устройства к силовым цепям или с использованием измерительного трансформатора. Передача данных в другие цепи выполняется путём подключения сопротивления.

Основным конструктивным отличием токового реле является конструкция катушки. Для неё используется толстый проводник, который обладает малым сопротивлением и наматывается на сердечник небольшим количеством витков. Для контроля заданных параметров предусмотрена автоматизированная система включения/отключения.

Реле времени

В большинстве случаев реле времени устанавливают при необходимости формирования каскадов пуска при подключении оборудования высокой мощности. Такой подход позволяет избежать резких скачков нагрузки в момент включения техники, превышающих допустимые значения. Задержка по времени обеспечивается за счёт дополнительного короткозамкнутого контура, роль которого выполняет надетая на сердечник медная гильза.

Принцип работы реле времени основан на «гашении» напряжённости электромагнитного поля за счёт наличия противоположно направленного тока. В итоге формируется задержка, величина которой может составлять 0.07–0.15 с. Регулировка выполняется пружиной якоря ЭМР. Тот же эффект наблюдается при выключении электропитания, но задержка может составлять 0.5–2 с.

Электрическое реле, устройство, принцип работы, разновидности и особенности применения

Современная электротехника использует огромное количество различных устройств, приспособлений и приборов, при помощи которых удается успешно решать те или иные технологические задачи, повышать комфорт эксплуатации электросетей в целом, а также отдельных участков цепи.

Одним из таких видов устройств, получивших наибольшее распространение в самых разных отраслях и сферах деятельности, является реле. Фактически изделие представляет собой специальный выключатель, при помощи которого можно в требуемый момент времени произвести включение или выключение определенного участка сети (электрической цепи), что позволит вносить определенны изменения в заданные постоянные входные величины, как электрически, та к и неэлектрические.

Существует огромное количество различных типов реле, которые отличаются не только по размерам и внешнему виду, но и по типу управляющего сигнала, исполнению и иным параметрам. На практике самое большое распространение получили электромагнитные реле.

Конечно, просто так понять, для чего необходимо реле и как оно работает достаточно сложно. Тем более, что работа таких устройств сопряжена с повышенной опасностью для жизни и здоровья людей. Дело в том, что электромагнитное реле используется в процессе передачи достаточно больших токов нагрузки. Соответственно, у тех людей, которые используют либо обслуживают линии, оборудование или агрегаты, в комплект которых входят различные реле, подвергаются риску поражения электрическим током. Так что вопросы оказания первой помощи при поражении электрическим током являются одними из важнейших на производстве.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Основные виды электромагнитных реле

Главным назначением этих устройств является коммутация при больших токах нагрузки. Иначе говоря, они выполняют функции переключателей, которые посредством слабых токов включают цепи с большими токами. Если такую цепь включать напрямую без реле, то проводка и кнопка просто не выдержит высоких токов и расплавится. Реле принимает на себя большую токовую нагрузку и производит коммутацию с помощью мощных контактов.

Электромагнитные выключатели разделяются на две основные группы:

  1. Нейтральные реле имеют наиболее простую конструкцию. В его состав входит контактная и магнитная система. Каждая контактная группа включает в себя два неподвижных и один общий подвижный контакт. Магнитная система состоит из подвижного якоря, сердечника, обмотки и ярма.
  2. Поляризованное реле состоит из таких же систем. Однако в магнитной системе присутствует два сердечника с обмотками, а также контактная тяга и постоянный магнит.

В отличие от нейтральных, электромагнитные поляризованные устройства способны срабатывать в зависимости от полярности управляющего сигнала. Для изготовления сердечника используется электротехническая листовая сталь, что позволяет значительно увеличить быстроту действия прибора.

Параметры изделий

РП разного типа имеют свой набор параметров в отношении технических характеристик. Необходимость в тех или иных данных возникает исходя из задач, предъявляемых прибору. Основные характеристики, ответственные за нормальную работу реле:

  • чувствительность;
  • ток (напряжение) срабатывания, отпускания, удержания;
  • коэффициент запаса;
  • рабочий ток;
  • сопротивление обмотки;
  • коммутационная способность;
  • габариты;
  • электрическая изоляция.

РП – важная и неотъемлемая составляющая большинства цепей в энергетике. Разнообразие моделей свидетельствует о том, что такой коммутационный прибор способен в полном объеме выполнять множество функций в любой схеме.

Конструктивное строение прибора

Электромагнитные устройства подключаются к электроцепи, осуществляющей контроль или регулировку изделий, которые подключены к силовому узлу, для преобразования. Запуск может осуществляться влиянием различного рода факторов: электропитание, световая энергия, гидростатическое или давление газа.


Конструктивное устройство электромагнитного реле:1 – пружина; 2 – подвижный якорь; 3 – ферромагнитный стержень (сердечник); 4 – катушка; 5 – основание; 6 – один или несколько неподвижных контактов; 7 – исполнительный орган

Согласно стандартам, простейшее контактное устройство координируется тремя основными участками: воспринимающий, промежуточный и исполнительный. Каждый из них представлен индивидуальным механизмом, отвечающим за определенные действия в коммутационной системе.

Первичный, так называемый чувствительный, элемент производит реакцию на входящий параметр и трансформирует его в физическую величину, требующуюся для функционирования контактора.

Такой воспринимающий механизм воплощен в электромагнитной катушке с сердечником — на схеме обозначен номером 4. В зависимости от сети, к нему может быть подключено или переменное, или постоянное напряжение.

Промежуточное звено начинает сравнительный анализ преобразованной величины с заложенным образцом. Как только достигается заданное значение, узел передает сигнал чувствительного механизма исполнительному. Этот участок состоит из пружин противодействия (1) и успокоителей.


Успокоительные элементы в контакторе используются для устранения колебаний подвижных сегментов, а в реле времени – для обеспечения необходимого временного интервала

В производственной части посредством коммутационных линий (6), расположенных на корпусе над колодкой, воспроизводится влияние на подчиненную линию и контакты замыкаются.

1 Схема управления насосной станцией с задвижкой и двумя насосами

В тексте и схеме выделил места, которые надо согласовать с технологией работы схемы (давление, уровень, и т.д.)

Схема управления насосной станцией с задвижкой и двумя насосами

Схема содержит двигатель задвижки М1 с реверсивным управлением и два двигателя насосов М2 и М3.

Схема управления насосной станцией с задвижкой и двумя насосами

Рассмотрим работу задвижки

Двигатель задвижки М1 включается через контакторы КМ1 и КМ2, которые обеспечивают реверс для открытия и закрытия задвижки. Схема управления задвижкой содержит две основные части – схема открытия, схема закрытия, и общие цепи.

К общим цепям можно отнести:

  • SL – поплавковое реле уровня, его контакты замыкаются при низком уровне жидкости,
  • SP – реле давления, его контакты замыкаются при нужном давлении жидкости.
  • SB1 – кнопка Стоп,
  • SQ3, SQ4 – аварийные выключатели задвижки,
  • KL1 – блокировочное реле, для правильной работы задвижки.

Цепи открытия задвижки:

  • SB2 – ручное открытие,
  • SQ2 – конечный выключатель открытого положения задвижки,
  • КМ1 – катушка контактора открытия задвижки,
  • HL2 – индикатор наличия общего питания и индикатор открывания.

Цепи закрытия задвижки:

  • SB3 – ручное закрытие,
  • SQ1 – конечный выключатель закрытого положения задвижки,
  • КМ2 – катушка контактора закрытия задвижки,
  • HL1 – индикатор наличия питания цепей открывания/закрывания и процесса закрывания.

В исходном состоянии задвижка закрыта, что контролируется конечным выключателем SQ1.

Открытие либо закрытие задвижки может происходить, только при низком уровне и нужном давлении жидкости и не активных аварийных концевых выключателях SQ3, SQ4.

Задвижка может открываться только если работает один из насосов. При этом включается реле KL1, и нормально открытый контакт этого реле включает контактор КМ1, который включает двигатель задвижки в направлении открытия. Задвижка открывается до тех пор, пока не сработает концевой выключатель SQ2.

Далее, при выключении насоса выключается реле KL1, и через его нормально закрытый контакт включается контактор КМ2, который включает двигатель задвижки в направлении закрытия. Задвижка закрывается до тех пор, пока не сработает концевой выключатель SQ1.

Задвижка может оставаться в промежуточном положении, если в процессе открытия либо закрытия разомкнутся контакты реле уровня или давления SL и SP.

Задвижкой можно управлять вручную, с помощью кнопок SB1, SB2, SB3.

Двигатель задвижки М1 включается через мотор-автомат SQ1 и силовые контакты КМ1 (открытие) либо КМ2 (закрытие).

Рассмотрим работу насосов

Система содержит два двигателя насоса, которые работают поочередно. Выбор насоса осуществляется вручную, с помощью переключателя SA1, который имеет 2 положения. В положении 1 (левая верхняя точка на схеме переключателя) работает контактор КМ3 (двигатель М2, насос Н1). В положении 2 работает контактор КМ4 (двигатель М3, насос Н2).

После выбора насоса для его включения нужно нажать кнопку Пуск SB5. Допустим, выбран насос Н1. После нажатия кнопки SB5 напряжение схемы управления поступает через защитный автомат QF2, кнопку Стоп SB4, кнопку Пуск SB5, переключатель SA1, нормально закрытые контакты КМ4, и питают левый вывод катушки контактора КМ3. Правый вывод контактора КМ3 питается через нормально закрытый контакт теплового реле КК1. Контактор КМ3 при отпускании кнопки Пуск SB5 остается включенным, благодаря контакту самопитания КМ3.

Силовые контакты КМ3 замыкаются, три фазы поступают через мотор-автомат QF3, контакты КМ3, тепловое реле КК1 на двигатель М2 насоса Н1.

Насос Н2 при его выборе переключателем SA1 работает аналогично, через свои цепи управления и питания.

Отключение работающего насоса производится тремя путями:

  • Штатно – нажатием кнопки Стоп SB4,
  • Переключателем SA1, после этого оба насоса будут в выключенном состоянии,
  • Аварийно – при срабатывании теплового реле КК1 либо КК2 вследствие перегрузки двигателя либо обрыва фазы.

Принцип действия контактора

В алгоритме работы этого вида реле заложено применение электродинамических сил, создаваемых в ферромагнетике во время прохождения электричества по спирали витков изолированного провода катушки.

Исходя из технических особенностей коммутатора и количества размещенных в нем контактных связей, якорь либо замыкает, либо размыкает их

Первоначальное расположение Г-образной пластины (якоря) зафиксировано пружиной. Подавая на магнит ток, якорь, с находящимся на нем коммутирующим контактом преодолевает силы пружины и тянется к намагниченному полю.

При передвижении хвостовик, расположенный на плоскости контакта, цепляет нижнюю контактную схему, перемещая ее вниз. Если на катушке прекращается подача электричества, пружина оттягивает назад ярмо и устройство принимает свой первоначальный вид.

Рассмотрим на примере, как работает реле электромагнитного типа в автомобиле.

Если его подключить к трехфазному асинхронному мотору будут воспроизведены следующие действия:

  1. Старт – включение сигнализации.
  2. Срабатывание пускателя.
  3. Замыкание последней пары контактов в результате — пуск механизма двигателя.

Кроме этого, именно реле отвечает за выключение мотора при разрыве реверса. Таким образом устраняется проблема резкой остановки двигателя.

Для распознавания типа электромагнитного контактора в производстве применяются маркировочные значения, состоящие из набора букв и цифр, нанесенных на устройство

Также важно знать, что электромагнитное реле может оснащаться несколькими группами регулировочных контактов. Количество последних полностью зависит от предназначения конкретной модели прибора

О чем расскажет маркировка?

В маркировке контакторов указан полный набор данных о назначении и особенностях конструкции, в том числе информация о климатическом исполнении.


Расшифровка модели ТКЕ520ДГ: устройство с выдержкой обмотки до 30 В, а контактов – до 5 А, есть два замыкающих контакта, конструкцией прибора предусмотрен долгосрочный режим работы, выполнен герметично

Рассмотрим подробно структуру условного обозначения на примере ПЭ41(Н) (*)(*)(*)(*)(*)/(*)(*)(*)(*)5:

  1. РЭП — реле электромагнитное промежуточное.
  2. 37 (Н) – номер разработки.
  3. (*) — обозначение рода тока в цепи включающей обмотки: 1 — постоянного тока; 2 — переменного тока.
  4. (*) — вид замедления: 1 — замедленные при включении; 2 — замедленные при отключении.
  5. (*) — значение исходя из численности обмоток;
  6. (*)(*) — числовое значение замыкающих и размыкающих контактов;
  7. (*)(*) — напряжение или ток силовой намотки: постоянный (D) и переменный (А);
  8. (*)(*) — обозначение электросилы удерживающих обмоток;
  9. (*) — вид и технология подсоединения тыловых проводниковых линий: 1 – с ламелями под пайку; 2 – монтаж с винтовой фиксацией; 3 — крепление клеммами к разъемной колодке.
  10. (*)5 — климатическое оформление и категория размещения по ГОСТ: УХ — умеренно-холодный; В — всеклиматический.

При выборе необходимой модели коммутирующего устройства берутся во внимание не только его электротехнические параметры, но и среда, в которой оно будет работать. Подбор контактора производится исходя из требуемых характеристик: питающей силы (В), расходуемой мощности (Вт), коммутируемого тока (А), групп контактов, время сработки (с), размеров


Подбор контактора производится исходя из требуемых характеристик: питающей силы (В), расходуемой мощности (Вт), коммутируемого тока (А), групп контактов, время сработки (с), размеров

Несмотря на предусмотренное высокое качество коммутатора, основной недостаток заключен в системе контактов. Предполагается, что чистая связная группа может находиться только в герметичных условиях вакуума. Если же воздействует основной отрицательный фактор – контакт с воздухом – на них начинает образовываться оксидная пленка.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий