Введение
Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах: — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;
— приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;
Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.
За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.
Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).
Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.
Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.
Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.
В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.
Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
- в панельном доме на обогрев кубометра воздуха требуется 41Вт;
- в кирпичном доме на м 3 — 34Вт.
Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему
Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .
Дальше посчитаем для вариантов в панельном и кирпичном доме:
- В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Диаметр трубопровода
Как выяснить минимальное значение внутреннего диаметра трубы розлива либо подводки к отопительному прибору? Не начнём лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для отличия между подачей и обраткой в 20 градусов. Именно это значение характерно для автономных систем.
Большая скорость потока теплоносителя не должна быть больше 1,5 м/с чтобы не было появления шумов, чаще ориентируются на скорость в 1 м/с.
Внутренний диаметр, мм | Тепловая мощность контура, Вт при скорости потока, м/с | ||
0,6 | 0,8 | 1 | |
8 | 2450 | 3270 | 4090 |
10 | 3830 | 5110 | 6390 |
12 | 5520 | 7360 | 9200 |
15 | 8620 | 11500 | 14370 |
20 | 15330 | 20440 | 25550 |
25 | 23950 | 31935 | 39920 |
32 | 39240 | 52320 | 65400 |
40 | 61315 | 81750 | 102190 |
50 | 95800 | 127735 | 168670 |
Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.
Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) металлической трубы. Пластиковые и металлопластиковые трубы в большинстве случаев маркируются наружным диаметром, который на 6-10 мм больше внутреннего
Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.
Пример выполнения расчета
Поправочные коэффициенты в данном случае будут равны:
- К1 (двухкамерный стеклопакет) = 1,0;
- К2 (стены из бруса) = 1,25;
- К3 (площадь остекления) = 1,1;
- К4 (при -25 °C -1,1, а при 30°C) = 1,16;
- К5 (три наружные стены) = 1,22;
- К6 (сверху теплый чердак) = 0,91;
- К7 (высота помещения) = 1,0.
В результате полная тепловая нагрузка будет равна: В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной: Пример расчета тепловой мощности системы отопления на видео:
Ответ
Расчет литража в системе отопления очень важное мероприятие от которого зависит дальнейшие расчеты по отоплению
Приведем некоторые данные:
Литраж теплоносителя в радиаторе:
алюминиевый радиатор — 1 секция — 0,450 литра
ø15 (G ½») — 0,177 литра
ø20 (G ¾») — 0,310 литра
ø25 (G 1,0″) — 0,490 литра
ø32 (G 1¼») — 0,800 литра
ø40 (G 1½») — 1,250 литра
ø50 (G 2,0″) — 1,960 литра
Расчитывается объема теплоносителя в системе по формуле :
V=V(радиаторов)+V(труб)+V(котла)+V(расширительного бака)
Примерный расчет максимального объема теплоносителя в системе необходим для того, чтобы тепловой мощности котла хватило для прогрева теплоносителя. В случае превышения объема теплоносителя, также как и превышения максимального объема отапливаемого помещения (условно норму возьмем 100 Вт на квадратный метр отапливаемой мощности), отопительный котел может не достичь граничной температуры носителя, что приведет к его непрерывной работе и повышенного износа и к значительному перерасходу топлива.
Оценить максимальный объем теплоносителя в системе для отопительных котлов системы АОГВ можно умножив его тепловую мощность (кВт) на коэфициент, численно равный 13,5 (литр/кВт).
Vmax=Qmax*13,5 (л)
Итак, для стандартных котлов типа АОГВ предельный объем теплоносителя в системе:
АОГВ 7 — 7*13,5=до 100 л
АОГВ 10 -10*13,5 =до 140 л
АОГВ 12 — 12*13,2=до160 л итд.
Пример перевода тепловой мощности
1 Кал/Час = 0,864 * 1 Вт/Час
Наибольшее распространение получили системы отопления с применением жидкостного теплоносителя. Эти комплексные системы включают в себя целый ряд оборудования: насосные станции, котельные, теплообменники и т.д. Стабильная работа оборудования зависит не только от его технического состояния, но и от типа и качества самого теплоносителя.
В большинстве случаев для обогрева загородных домов, дач, гаражей и других объектов заполнение системы отопления производили водой. Помимо неоспоримой пользы это приносило ряд неудобств, к тому же со временем выявлялись существенные недостатки. Небольшой объем теплоносителя в системе отопления котельных позволил найти ей достойную альтернативу.
Формулы для расчётов и справочные данные
Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:
Мк=1,2* Тп, где:
- Мк – тепловая производительность системы отопления, кВт;
- Тп – тепловые потери дома;
- 1,2 – коэффициент запаса (составляет 20%).
Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.
Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.
Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления
При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу. Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное
Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное
Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное
Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.
В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:
- К1 – тип окон;
- К2 – изоляция стен;
- К3 – соотношение площади пола и окон;
- К4 – минимальная температура на улице;
- К5 – количество наружных стен дома;
- К6 – этажность;
- К7 – высота помещения.
Для окон коэффициент потерь тепла составляет:
- обычное остекление – 1,27;
- двухкамерный стеклопакет – 1;
- трёхкамерный стеклопакет – 0,85.
Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.
Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:
- бетонные панели, блоки – 1,25-1,5;
- брёвна, брус – 1,25;
- кирпич (1,5 кирпича) – 1,5;
- кирпич (2,5 кирпича) – 1,1;
- пенобетон с повышенной теплоизоляцией – 1.
Чем больше площадь окон относительно пола, тем больше тепла теряет дом:
Соотношение площади окон к площади пола | Значение коэффициента |
---|---|
10% | 0,8 |
10-19% | 0,9 |
20% | 1,0 |
21-29% | 1,1 |
30% | 1,2 |
31-39% | 1,3 |
40% | 1,4 |
50% | 1,5 |
Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:
- До -10С – 0,7;
- -10С – 0,8;
- -15C — 0,90;
- -20C — 1,00;
- -25C — 1,10;
- -30C — 1,20;
- -35C — 1,30.
Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:
- четыре стены – 1,33;%
- три стены – 1,22;
- две стены – 1,2;
- одна стена – 1.
Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.
Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.
Что касается высоты стен, то значения будут такими:
- 4,5 м – 1,2;
- 4,0 м – 1,15;
- 3,5 м – 1,1;
- 3,0 м – 1,05;
- 2,5 м – 1.
Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).
Итоговая формула для расчёта коэффициента тепловых потерь:
Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7.
Коэффициент УДтп равен 100 Ватт/м2.
Циркуляционный насос
Нам серьёзны два параметра насоса: его производительность и напор. В частном доме при любой разумной протяженности контура достаточно минимального для наиболее недорогих насосов напора в 2 метра (0,2 кгс/см2): именно это значение перепада снабжает циркуляцию системы отопления многоквартирных домов.
Нужная производительность вычисляется по формуле G=Q/(1,163*Dt).
В ней:
- G — производительность (м3/час).
- Q — мощность контура, в который устанавливается насос (КВт).
- Dt — перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).
Для контура, тепловая нагрузка на который образовывает 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.
Понятие гидравлического расчета
Определяющим фактором технологического развития систем отопления стала обычная экономия на энергоноситель. Стремление сэкономить заставляет тщательней подходить к проектированию, выбору материалов, способов монтажа и эксплуатации отопления для жилища.
Поэтому, если вы решили создать уникальную и в первую очередь экономную систему отопления для своей квартиры или дома, тогда рекомендуем ознакомится с правила расчета и проектирования.
Перед тем как дать определение гидравлического расчёта системы, нужно ясно и четко понимать, что индивидуальная система отопления квартиры и дома расположена условно на порядок выше относительно центральной системы отопления большого здания.
Персональная отопительная система базируется на принципиально ином подходе к понятиям тепла и энергоресурса.
Суть гидравлического расчета заключается в том, что расход теплоносителя не задаются заранее с существенным приближением к реальным параметрам, а определяются путем увязки диаметров трубопровода с параметрами давления во всех кольцах системы
Достаточно провести тривиальное сравнение этих систем по следующим параметрам.
- Центральная отопительная система (котельня-дом-квартира) основывается на стандартных типах энергоносителя – уголь, газ. В автономной системе можно использовать практический любое вещество, которое имеет высокую удельную теплоту сгорания, или же комбинацию из нескольких жидких, твёрдых, гранулированных материалов.
- ЦОС построена на обычных элементах: металлические трубы, “топорные” батареи, запорная арматура. Индивидуальная же система отопления позволяет комбинировать самые разные элементы: многосекционные радиаторы с хорошей теплоотдачей, высокотехнологичные термостаты, разные виды труб (ПВХ и медные), краны, заглушки, фитинги и конечно собственные более экономичные котлы, циркуляционные насосы.
- Если зайти в квартиру типичного панельного дома, построенного лет 20-40 назад, видим что система отопления сводиться к наличию 7-секционной батареи под окном в каждой комнате квартиры плюс вертикальную трубу через весь дом (стояк), с помощью которой можно “общаться” с соседями сверху/снизу. То ли дело автономная система отопления (АСО) – позволяет строить систему любой сложности с учётом индивидуальных пожеланий жильцов квартиры.
- В отличи от ЦОС, отдельная система отопления учитывает достаточно внушительный список параметров, которые влияют на передачу, расход энергии и утери теплоты. Температурный режим окружающей среды, требуемый диапазон температуры в помещениях, площадь и объём помещения, количество окон и дверей, назначение помещений и т.д.
Таким образом, гидравлический расчет системы отопления (ГРСО) – это условный набор вычисляемых характеристик отопительной системы, который предоставляет исчерпывающую информацию о таких параметрах, как диаметр труб, количество радиаторов и клапанов.
Данный тип радиаторов устанавливался в большинстве панельных домов на постсоветском пространстве. Экономия на материалах и отсутствие конструкторской идеи “на лицо”
ГРСО позволяет правильно выбрать водно-кольцевой насос (отопительного котла) для транспортировки горячей воды к конечным элементам системы отопления (радиаторам) и, в конечном результате, иметь максимально уравновешенную систему, что напрямую влияет на финансовые вложения в части отопления жилища.
Еще один тип отопительного радиатора для ЦОС. Это более универсальное изделие, которое может иметь любое количество рёбер. Так можно увеличить или уменьшить площадь теплообмена
Тепловой расчёт отопления: общий порядок
Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.
Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.
Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.
Основные задачи расчёта и проектирования системы отопления:
- наиболее достоверно определить тепловые потери;
- определить количество и условия использования теплоносителя;
- максимально точно подобрать элементы генерации, перемещения и отдачи тепла.
При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.
На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.
Отопление – это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании. Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения
Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.
В результате теплового расчёта в наличии будет следующая информация:
- число тепловых потерь, мощность котла;
- количество и тип тепловых радиаторов для каждой комнаты отдельно;
- гидравлические характеристики трубопровода;
- объём, скорость теплоносителя, мощность теплового насоса.
Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.
Последовательность выполнения гидравлического расчета
1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.
Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.
В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.
2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:
а) заданный расход воды;
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
3. Определяется расчетное циркуляционное давление по формуле
, (5.1)
где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
– сумма длин участков главного циркуляционного кольца;
– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления
(),C | , кг/(м3К) |
85-65 | 0,6 |
95-70 | 0,64 |
105-70 | 0,66 |
115-70 | 0,68 |
– естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
Определяются удельные потери давления на трение
, (5.4)
где к=0,65 определяет долю потерь давления на трение.
5. Расход воды на участке определяется по формуле
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг – tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
7. Определяются потери давления на трение на расчетном участке, Па:
. (5.6)
Результаты расчета заносят в табл.5.2.
8. Определяются потери давления в местных сопротивлениях, используя или формулу:
, (5.7)
где– сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
Таблица 5.3 – Коэффициенты местных сопротивлений
№ п/п | Наименования участков и местных сопротивлений | Значения коэффициентов местных сопротивлений | Примечания |
9. Определяют суммарные потери давления на каждом участке
. (5.8)
10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.
Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.
12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.
Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.
Таблица 5.2 – Результаты гидравлического расчета для системы отопления
На схеме трубопровода | По предварительному расчету | По окончательному расчету | ||||||||||||||
Номер участка | Тепловая нагрузка Q, Вт | Расход теплоносителя G, кг/ч | Длина участка l,м | Диаметрd, мм | Скоростьv, м/с | Удельные потери давления на трение R, Па/м | Потери давления на трение Δртр, Па | Сумма коэффициентов местных сопротивлений∑ξ | Потери давления в местных сопротивлениях Z | d, мм | v, м/с | R, Па/м | Δртр, Па | ∑ξ | Z, Па | Rl+Z, Па |
Занятие 6
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Выводы и полезное видео по теме
Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:
Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:
Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.
С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.
Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.
Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.