Сфера применения солнечной энергии
Есть три направления использования солнечной энергии:
- Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
- Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
- Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.
Солнечные батареи удобно применять там, куда нельзя подвести электричество
Пример расчета необходимой мощности
При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.
Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.
Компании производители рекомендуют исходить из таких цифр:
- обеспечение горячего водоснабжения не более 70%;
- обеспечение отопительной системы не более 30%.
Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.
Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией.
Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.
Пример расчета:
Стандартная длина трубки составляет 1800 мм, эффективная – 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:
S = 1,6 * 0,058 = 0,0928м2
КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:
W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч
Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д.
С всеми видами альтернативных источников энергии и способами их использования вы сможете ознакомиться в представленной статье.
Что такое контроллер заряда аккумуляторов и для чего он нужен
Зачем нужен контроллер заряда?
Контроллер заряда это устройство которое автоматически регулирует уровень тока и напряжения от источника (например солнечных батарей) для обеспечения заряда аккумуляторных батарей, таким образом предохраняя аккумуляторы от повреждений.
Можно ли обойтись без контроллера заряда?
Имея некоторый опыт работы с электроприборами, умея пользоваться вольтметром и амперметром, внимательно изучив инструкцию аккумулятора на предмет зарядных и разрядных характеристик безусловно можно обойтись без контроллера заряда.
Заряд аккумулятора определяется напряжением между клеммами. Ничего не мешает подсоединить источник (например солнечные батареи) напрямую к аккумулятору, при этом контролируя значения напряжения на клеммах и силу тока от источника (чтобы аккумулятор не был поврежден). Когда напряжение на клеммах будет соответствовать максимуму заряда нужно просто отключить источник. Это позволит зарядить аккумулятор на 60-70% от максимальной емкости. Для того чтобы зарядить его на 100%, аккумулятору необходимо стабилизироваться – некоторое время после достижения максимального напряжения продолжать заряжаться при этом напряжении.
При таком способе заряда АКБ велика вероятность снижения номинальной емкости (в связи с систематическим недозарядом) или выхода из строя из-за высокого тока или напряжения. Именно поэтому используются различные контроллеры заряда.
Какие бывают контроллеры заряда?
В основном разделяют три типа контроллеров заряда – on/off контроллер, PWM (ШИМ) контроллер и MPPT (ТММ) контроллеры. В чем же их особенности и чем они отличаются:
on/off контроллер заряда
данное устройство выполняет функцию отключения аккумуляторов от источника при достижении определенного напряжения. Такой тип контроллеров на сегодняшний день практически не используется. Это простейшая альтернатива ручному контролю заряда аккумуляторов о котором мы говорили ранее.
PWM (ШИМ) контроллер
Этот прибор является уже более продвинутым вариантом для заряда аккумуляторов, поскольку в автоматическом режиме контролирует уровень тока и напряжения, а также следит за наступлением максимума напряжения. После того как максимум напряжения достигнут, ШИМ контроллер удерживает его некоторое время для стабилизации аккумулятора и достижения его максимальной емкости. Как правило такие контроллеры стоят недорого и могут удовлетворить простым солнечным системам.
MPPT (ТММ) контроллеры
Данный контроллер является наиболее современным решением для солнечных электростанций. Солнечные панели вырабатывают дают мощность при строго определенном значении тока и напряжении (кривой ВАХ – вольт-амперной характеристики) – этот режим называется Точкой Максимальной Мощности (ТММ). MPPT контроллер позволяет отслеживать эту точку и может наиболее эффективно использовать энергию солнечных батарей, что в свою очередь увеличивает скорость заряда аккумуляторов. Такие контроллеры могут на 30-40% эффективнее заряжать аккумуляторы (банк аккумуляторов) , поэтому для резервных и автономных солнечных электростанций наиболее выгодным становится использование именно таких контроллеров не смотря на их высокую стоимость относительно ШИМ контроллеров.
Какой контроллер заряда выбрать?
Выбирая контроллер для солнечной системы прежде всего нужно понять масштаб самой системы. Если вы собираете небольшую солнечную систему для обеспечения наиболее необходимых бытовых приборов электричеством (от 0.3 кВт до 2 кВт) то вполне можно обойтись правильно подобранным ШИМ контроллером. Если же речь идет об автономной системе, резервной системе или, возможно, о системе совместимой с сетевым электричеством, то в данном случае не обойтись без хорошего MPPT контроллера.
В нашем интернет- магазине можно выбрать контроллеры и другое оборудование для домашних солнечных и ветровых электростанций:
https://repiter.mobi/products/kontrollery-zaryada-solnechnoy-paneli-f185388465/
Вы также можете позвонить нам по телефону 0966737777 или 0567853685 и мы будем рады помочь вам подобрать контроллер в соответствии с вашей потребностью!
Разновидности
На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.
MPPT-контроллер
Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.
Характеристики устройства:
- Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
- Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
- Данный контроллер может работать с нестандартным напряжением, например, 28 В.
- Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
- Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
- Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
- В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
- Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
- Некоторые модели имеют возможность одновременно работать с гибридным инвертором.
Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.
PWM-контроллер
Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.
Характеристики устройства:
- Напряжение на входе не более 140 В.
- Работают с солнечными батареями на 12 и 24 В.
- КПД практически равен 100%.
- Возможность работы с множеством аккумуляторов различного типа.
- Максимальное значение тока на входе достигает 60 А.
- Температура функционирования от –25 до 55 ºC.
- Возможность зарядить АКБ с нуля.
Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.
MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.
Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.
Комплект солнечной электростанции
Типичный комплект солнечной электростанции
Данное оборудование применяется в небольших гелиосистемах которые можно использовать для дома или для дачи. К обязательным компонентам относятся:
- Солнечные панели или батареи – могут быть монокристаллические и поликристаллические. Чем отличаются и какие выбрать читайте здесь.
- Коннекторы для солнечных батарей – предназначены для быстрого подключения провода к панелям. Если бюджет ограничен, можно использовать пайку, но данное соединение намного удобнее.
- Кабель, используется одножильный медный в двойной изоляции, стойкий к любым атмосферным воздействиям, сечение от 1.5 мм.
Опционный комплектующие, которые не обязательно должны быть в системе и устанавливаются при определенных задачах:
- Аккумуляторные батареи – существует несколько вариантов, какой выбрать .
- Контроллер заряда аккумуляторов.
- Реверсный электросчетчик, устанавливается если вы хотите продавать электроэнергию. В некоторых странах существует так называемый “зеленый тариф”, который позволяет зарабатывать, делая это.
Важные характеристики батарей, которые нужно учитывать
• Номинальное напряжение панелей – 12В или 24В. • Максимальное напряжение при пиковой мощности Vmp
• Напряжение холостого хода Voc – напряжение, выдаваемое панелями без нагрузки (важно при выборе контроллера заряда аккумулятора).• Ток Imp – ток при максимальной мощности панели в А
Виды фотоэлементов
Основная и довольно сложная задача – найти и купить фотоэлектрические преобразователи. Они представляют собой кремниевые пластины, которые преобразовывают солнечную энергию в электричество. Фотоэлементы делятся на два типа: монокристаллические и поликристаллические. Первые более эффективны и отличаются высоким КПД – 20-25%, а вторые всего до 20%. Поликристаллические фотоэлементы ярко синие и менее дорогостоящие. А моно- можно отличить по форме – она не квадратная, а восьмиугольная, и цена на них выше.
Если паять получается не очень хорошо, то для подключения солнечной батареи своими руками рекомендуется приобретать готовые фотоэлементы с проводниками. Если же присутствует уверенность, что припаять элементы получится самостоятельно, не повредив преобразователь, можно приобрести набор, в котором проводники приложены отдельно.
2 Структурные схемы контроллеров
Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.
2.1 Вариант #1 – устройства PWM
Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.
Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность
Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.
Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.
Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.
2.2 Вариант #2 – приборы MPPT
Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.
Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами
Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.
Схемой таких устройств реализуются несколько методов контроля:
- возмущения и наблюдения;
- возрастающей проводимости;
- токовой развёртки;
- постоянного напряжения.
А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.
Оптимизация полученных значений
Если идет речь о создании на 100% автономной системы, здесь солнечное электричество вырабатывается довольно дорого. В этом случае, исходя из данных, занесенных в спецификацию, лучше оставить в перечне только приборы с энергосберегающими характеристиками — если это лампы, то светодиодные или люминесцентные, если холодильник, то класса А, а еще лучше А++ .
Приборы, которые не относятся к разряду самых необходимых, выгодней питать от генератора. Когда гелиостанция — резервный вариант, то при временном отсутствии централизованной подачи электропитания, также лучше не использовать энергоемкую технику до момента, пока ситуация не нормализуется.
Солнечная электростанция будет работать стабильно в безаварийном режиме, если нагрузки выровнять по максимуму, исключить возможность резких временных провалов электропотребления. Опираясь на эти критерии, можно выбрать для своей солнечной установки экономичные варианты составляющих ее модулей. Полнее раскрыть всю картину поможет график.
На нем четко можно проследить неравномерность потребления электроэнергии и сделать так, чтобы пиковые нагрузки приходились на период, когда солнце наиболее активно.
На данном графике вы сможете отследить как неравномерно энергопотребление: нам нужно – сдвинуть максимумы на время наибольшей активности солнца и снизить потребление электроэнергии в сутки, особенно ночью.
Оптимизировать нерациональный график энергопотребления можно на базе спецификации, снизив как суточное потребление, так и среднесуточную почасовую нагрузку. Возможно, нет смысла покупать более мощные и дорогие солнечные модули, а разумней смириться с небольшими временными неудобствами.
Подбор контроллера по напряжению и току солнечных батарей и акб
Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.
Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.
Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.
Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.
У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.
Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.
Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.
Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.
В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.
Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:
- 800Вт при напряжении АКБ электростанции 12В;
- 1600Вт при напряжении АКБ электростанции 24В;
- 2400Вт при напряжении АКБ электростанции 36В;
- 3200Вт при напряжении АКБ электростанции 48В.
Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.
Варианты соединения солнечных панелей между собой
Особых проблем не возникает, если панель одна, также и вариант только один: подсоединяют к соответствующим разъемам узлов.
Если же фотоэлементов, секций — две или больше, то возможны несколько модификаций соединения солнечных панелей между собой:
- параллельное соединение солнечных панелей. Подключаются между собой аналогичные по полярности клеммы. На выходе получаем 12 В;
- последовательное соединение солнечных панелей: «+» первой панели к «−» второй. Оставшийся «−» первой и «+» второй — на контроллер. На выходе получим 24 В;
- самая оптимальная схема последовательно-параллельная, комбинация. Предполагает наличие отдельных групп фотоэлементов. Внутри секции панели объединены параллельно. Сами же группы — последовательно. На выходе получим самый оптимальный результат.
Ниже схематически параллельная, последовательная и смешанная схемы как правильно подсоединить панели между собой:
Для чего нужен контроллер заряда для солнечной батареи?
Аккумуляторы были изобретены для того, чтобы в них запасать энергию. Поэтому они нашли широчайшее применение в альтернативной энергетике, в установках малых и крупных масштабов. Но есть ряд проблем:
- Солнечный свет в течение светлого времени суток имеет разную интенсивность.
- В зависимости от схемы соединений вашей СЭС на выходных клеммах панелей может быть разная величина напряжений.
Контроллер заряда солнечной батареи как раз и нужен для того, чтобы преобразовать энергию, которую отдают устройства в правильный для аккумулятора «вид». С его помощью потоки энергии распределяются таким образом, чтобы обеспечить зарядку приборов в правильном режиме.
Устройство не только помогает зарядить аккумулятор, но и благодаря тому, что этот процесс становится достаточно оптимизированным – срок ее жизни значительно продлевается.
Солнечные батареи: терминология
В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.
По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.
Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.
Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.
Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается
Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.
Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор
Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.
Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.
Как работает технология
Принцип действия солнечных батарей основан на возможности взаимодействия солнечного света (а это электромагнитное излучение) с веществом. При этом взаимодействии энергия фотонов (световых частиц) передается электронам вещества, то есть, энергия света преобразуется в постоянный электрический ток.
Явление было открыто еще в 19 веке, и получило название фотоэлектрического эффекта (фотоэффекта). Для его возникновения и поддержания необходимы фотоэлектрические преобразователи (фотоэлементы), полупроводники по способу функционирования.
Полупроводник – материал с избытком или недостатком электронов. В полупроводниковом элементе имеется два слоя с разной проводимостью. Слой с лишними электронами играет роль катода, слой с недостатком электронов – анода. В большинстве современных изделий роль полупроводников выполняют кремниевые пластины, обладающие необходимыми полупроводниковыми свойствами.
Отдельные фотоэлементы имеют слишком малую мощность, чтобы питать электроприбор. Поэтому их объединяют в электрическую цепь, которая формирует то, что называют солнечной батареей (или панелью). Устройство имеет следующее строение:
- Изделие выглядит как панель, в которой заламинированы кремниевые пластины, ответственные за преобразование энергии.
- Сверху панель защищает закаленное стекло. Чтобы повысить эффективность, выбирают марку стекла с низким содержанием оксидов железа. Благодаря такому решению достигается высокая прозрачность, что также играет на эффективность системы.
- Благодаря ламинации панель получается полностью герметичной, а используемые материалы делают ее стойкой к ветровым и снеговым нагрузкам.
Функции контроллеров
Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:
- перезаряд
- недозаряд
Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.
Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.
На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.
Почему падает заряд
У всех АКБ есть определённая ёмкость, прописанная в Ач. На легковых авто чаще всего встречаются батареи на 60-80 Ач. То есть при 60 Ач устройство может в течение 60 часов выдавать ток, сила которого составит 1 Ампер. Но это в теории.
На практике всё иначе. Как только происходит запуск мотора, заряд сильно падает. Но он компенсируется за счёт работы генератора. Не все водители ездят много и часто, а потому генератор попросту не успевает восполнить весь заряд. Доказано, что в большинстве случаев авто эксплуатируются с постоянным недозарядом.
Ёмкость может уменьшаться под воздействием разных факторов:
- плохое крепление, механические повреждения;
- проблемы в электрооборудовании;
- нарушение целостности электропроводки;
- процессы сульфатации;
- езда по городу короткими поездками;
- низкая температура окружающей среды и пр.
Поскольку большинство водителей ездят именно в таких условиях, периодически проверять состояние и заряд АКБ нужно обязательно.