Расчет площади воздуховодов и фасонных изделий: правила выполнения вычислений + примеры расчетов по формулам

Общие требования

В вентиляционных системах, предназначенных для удаления пожароопасных летучих веществ, воздуховоды должны производиться из огнеупорных материалов. Основные транзитные сегменты вентиляции необходимо выполнять из металла.

Рассчитывая окончательные параметры воздуховодов, необходимо предусмотреть:

  1. Возможность установки противопожарных клапанов как в горизонтальном, так и в вертикальном положении.
  2. Монтаж воздушных затворов на площадках между этажами. Функциональные возможности этих приборов должны соответствовать нормативным требованиям по аварийному блокированию выборочных сегментов системы.
  3. На каждом поэтажном коллекторе возможно подключить максимально пять воздуховодов.
  4. Монтаж системы автоматического пожарного оповещения.

Во всех проводимых расчетах были использованы рекомендации строительных норм и правил. Эти нормативные значения позволяют выяснить минимально возможную эффективность вентиляции, которая сможет обеспечить комфортный микроклимат в помещении

Иначе говоря, правила СНиП ориентированы прежде всего на минимизирование затрат на монтаж и эксплуатацию вентсистемы, что немаловажно при разработке систем вентиляции общественных и админзданий

Для частных домов и квартир ситуация несколько иная, так как это личный проект, в котором можно строго не придерживаться указаний СНиП. Из-за этого продуктивность вентиляции может отклоняться от нормативных значений, так как индивидуальное представление о комфорте у каждого свое.

Вычисление потерь на трение

Потери энергии потока вычисляются пропорционально так называемому «динамическому» напору, величине pW2/2, где р -плотность воздуха при температуре потока (определяется по таблице (1) и (2)), a W — скорость в том или ином сечении контура циркуляции воздуха.

Падение давления воздуха вследствие действия трения вычисляют по формуле Вейсбаха:


=

гдеl

— длина участка контура циркуляции, м,dэкв -эквивалентный диаметр поперечного сечения участка, м,

dэк

в=


-коэффициент сопротивления трения. Коэффициент

сопротивления трения определяется режимом течениявоздуха в рассматриваемом сечении контура циркуляции, или величиной критерия Рейнольдса:

Re

=

dэкв где Widэкв

— скорость и эквивалентный диаметр канала и кинематический коэффициент вязкости воздуха (определяется по таблицам /1/ и /2/, м /с.

Значение


для значенийRe в интервале105 -108 (развитое турбулентное значение) определяется по формуле Никурадзе:

=3,2. 10-3— 0,231.Re-0,231 Более подробные сведения по выбору

можно получить из /4/ и /5/ В /5/ приведена диаграмма для нахождения значения


, облегчающая расчеты. Вычисленные значения


выражаются в паскалях (Па).

В таблице 3 сведены значения исходных данных для каждого канала скорость, длина, поперечное сечение, эквивалентный диаметр, величина критерия Рейнольдса, коэффициент сопротивления, динамический напор и величина вычисленных потерь на трение.

Таблица 3
№ канала (рис5) W,

м/с

F,

м2

dэкв

М

l, м


W2/2, Н

Re


, Па

1 15 0.8 0,77 1,0 76,5 3,5 . 105 0,015 1,5
2 25 0,87 0,88 1,75 212,5 6,7 . 105 0,013 5,5
3 21,7 1,0 0,60 3,0 160,1 3,9 . 105 0,014 11,2
4 28,9 0,75 0,60 1,75 283,9 5,3 . 105 0,0135 11,2

Расчеты сопротивлений трения в каналах печи

5.3.

«Местные» потери — под этим термином понимают потери энергии в тех местах, где поток воздуха внезапно расширяется или суживается, претерпевает повороты и т.д. В проектируемой печи таких мест достаточно много — калориферы, повороты каналов, расширения или сужения каналов и др. Эти потери вычисляются также, как доля динамического напораp=W2/2, умножая его на так называемый «коэффициент местного сопротивления» : Сумма


29.4Па

местн=


/2 Коэффициент местного сопротивления определяется но таблицам /1/ и /5/ в зависимости от типа местного сопротивления, и габаритных характеристик. Например, в данной печи местное сопротивление типа внезапного сужения имеет место в канале 1-2 (см. рис.7). Соотношение сечений (узкого к широкому).По приложению /1 / находим =0,25


=160Па, Совершенно аналогично вычисляются другие местные потери. Необходимо отметить, что в ряде случаев местные потери обусловлены действием сразу двух видов сопротивлений. Например, имеет место поворот канала и одновременно изменение его сечения (сужение или расширение) следует провести вычисление потерь для обоих случаев и результаты сложить. Результаты вычислений местных потерь сведены в таблицу 4

Тип местного сопротивления W,

м/с


Па

Прим.
Внезапное сужение 43,4 0,125 160 Нах. по табл
1-1 Поворот на 90° 25 1,5 318 ~
2-3 Скругленный поворот 25 О,1 21,3 ~
3 Диафрагмы в

потоке (калориферы)

35,8 3,6 601 ~
3-4 Скругленный поворот 21,7 0,28 44,8 ~
4-1 Поворот на 90 с раширением 28,9 0,85 241 ~
4-1 Внезапное сужение 28,9 0,09 25,5 ~

Сумма


=1411,6 Па

Суммарные потери:

=30 + 1410 =1440 Па

Вентиляторы выбираем по характеристикам центробежных

вентиляторов , предположительно для типа ВРС № 10 (рабочее

колесо диаметром 1000 мм

).

Для производительности 21,5 м3

и необходимого напораН>1440 Па.. Получаем: n=550об/мин;

,5; Nуст


25 кВт. Привод вентилятора от асинхронного двигателя, мощностью 30 кВт

типа АО при720 об/мин , через клиноременную передачу.

Мощность нагревательного прибора

Для определения наиболее подходящей мощности нагревательного прибора, необходимо учитывать:

  • значения требуемой температуры;
  • показатель минимально возможной температуры снаружи помещения.

Специалистами принято, что минимальный уровень температуры внутри систем вентиляции не превышает 18 градусов по Цельсию. Внутренние температурные условия зависят исключительно от внешнего климата. Для обыкновенных квартир больше всего подходит нагреватель с мощностью 1–5 кВт. Общественным (в том числе офисным) помещениям требуется более производительный прибор, чья мощность равна 5–50 кВт.

Чтобы выполнить наиболее точные подсчёты требуемой мощности нагревателя можно воспользоваться следующей формулой:

P = T * L * Cv /1000,

Здесь P – мощность обогревательного прибора (кВт); T – разность основных температур (в помещении и за его пределами); L – КПД вентиляционной системы; Cv – теплоёмкость (0.336 Вт * ч/метры квадратные/градус по Цельсию).

Использование математических формул

Производительность работы вентиляционной системы базируется на правильном подборе определенных деталей и технического оснащения. Отрицательное воздействие на микроклиматические условия может оказать перепроектирование помещения, если не воспользоваться инженерной помощью в расчете площади воздуховодов.

Цель расчета заключается в обеспечении необходимого соотношения замещения воздуха во всех помещениях в соответствии с их предназначением. Для принудительной и естественной фильтровентиляции необходимы индивидуальные инструкции, но содержащие совокупную ориентированность

В ходе установления противодействия воздушному потоку принимают во внимание геометрическую форму и вещество, из которого изготавливаются воздуховоды

Также принимается в расчет их суммарная длина, кинематическая схема и присутствие разветвлений. Отдельным пунктом рассчитываются теплопотери для поддержания благоприятных микроклиматических условий и сокращения расходов на техническое обслуживание зданий в холодное время.

Для того чтобы рассчитать площадь воздуховодов, пользуются коэффициентами аэродинамических вычислений. Учитывая полученные величины, подбирают приемлемые габариты латерального сечения воздушного канала в зависимости от нормативной величины быстроты перемещения воздушной струи. Затем определяют пиковые потери давления в вентиляционной системе, ориентируясь на геометрическую форму, темп передвижения и характеристики модели вентиляционного канала.

Как рассчитать площадь воздуховода различных типов сечений?

Расчёт квадратуры воздуховодов разных сечений имеет свои особенности, так как расход воздуха у них будет значительно отличаться даже при одинаковых параметрах скорости перемещения воздушных масс и площади. Кроме того, при расчёте вентиляционных сетей большой протяжённости и/или разветвленности учитывается влажность и температура воздуха (если она превышает +20°С). А также аэродинамическое сопротивление воздуховодов и фасонных изделий, зависящее от формы и материала изготовления (различные коэффициенты трения). Учёт этих параметров выражается в использовании различных поправочных коэффициентов в расчётных формулах.

Расчёт квадратуры производится по двум параметрам, взятым из нормативов (фактически эти параметры описывают кратность воздухообмена):

  1. расход воздуха – R (м³/час);
  2. скорость воздушного потока – V (м/с).

Формула площади воздуховодов оперирует параметрами расхода воздуха, взятыми из нормативов:

S = R/k × V, где

K – коэффициент, равный 3600.

Существуют альтернативные формулы, оперирующие другими коэффициентами, к примеру:

S = R × 2,778/V.

При использовании воздуховодов большого сечения существенно снижается уровень шума воздушных потоков и затраты электроэнергии на их перемещение. Однако материалоёмкость таких конструкций значительно выше, что увеличивает их первоначальную стоимость.

Круглый воздуховод декоративного типа на подвесных держателях

Значительное влияние на эффективность перемещение воздушных потоков оказывает форма сечения. В прямоугольных воздуховодах воздушный поток получает большее сопротивление. Однако прямоугольная форма более удобна для монтажа, особенно при недостатке места, и может размещаться впритык к основным строительным конструкциям. Круглые воздуховоды имеют лучшую аэродинамичность, но не всегда вписываются в интерьер. А изделия с высокими эстетическими показателями имеют гораздо большую стоимость

Учитывая приведённые факты, в качестве альтернативы рекомендуется обратить внимание на овальные воздуховоды, сочетающее в себе эргономичность и эффективность

Вентиляционные каналы на предприятии

Как посчитать площадь круглого воздуховода?

Для расчёта диаметра круглого вентканала используется нормативная площадь сечения:

Фактическую площадь получают из формулы:

Как рассчитать площадь воздуховода прямоугольного сечения?

Для прямоугольных коробов используются те же формулы, что и для круглых. Длину сторон вычисляют по формуле:

Dп – диагональ прямоугольника, вписанного в круг (фактически эквивалентный диаметр круга);

a, b – стороны.

Фактическая площадь узнаётся из формулы:

Также для вычисления основных параметров проектировщики используют таблицы.

Таблица основных параметров площади и формы сечений

Расчёт площади овального воздуховода

Диаметры овального воздуховода вычисляются по его площади. Используются следующие формулы:

Диаметр:

Р – периметр окружности овалоида,

Площадь овального воздуховода вычисляется по формуле:

a, b – большой и малый диаметр овала, соответственно.

Овальные воздушные каналы сочетают в себе преимущества прямоугольных и круглых

Расчет материала для воздуховодов и фасонных элементов

Расчет площади воздуховодов и фасонных изделий необходим при их производстве. Он делается для того, чтобы определить количество материала (жести) для изготовления участка трубы или какого-либо фасонного элемента.

Для расчета необходимо использовать лишь формулы из геометрии. Например, для круглого воздуховода находим диаметр окружности, умножением которого на длину участка получим площадь наружной поверхности трубы.

Для изготовления 1 метра трубопровода диаметром 100 мм потребуется: π·D·1=3.14·0.1·1=0.314 м² жести. Также необходимо учитывать от 10-15 мм запаса на соединение. Также рассчитывается и прямоугольный воздуховод.

Расчет фасонных частей воздуховодов осложнен тем, что для него не существует определенных формул, как для круглого или прямоугольного сечения. Для каждого элемента необходимо проводить раскрой и рассчитывать необходимое количество материалов. Это делается на производстве или в жестяных мастерских.

Современные блага цивилизации позволяют обустроить дом по своему желанию, оснастив жилище всеми необходимыми для комфортного проживания предметами, в том числе и сетями снабжения. Можно ли представить современный дом без вентиляционной системы и кондиционера? Сегодня это кажется нереальным, но ведь раньше людям не было известно о таких благах.

От того, насколько правильно спроектирована система вентиляции, зависит ее дальнейшее функционирование. Здесь важна каждая деталь. Ведь при допущении даже небольшой ошибки система может дать сбой и, к примеру, вместо холодного воздуха гнать внутрь помещения горячий. Система вентиляции состоит из множества элементов, которые соединяются между собой специальными деталями и фасонными изделиями.

Главный фактор, влияющий на производительность вентиляционной системы, — правильность проектирования. Расчет площади воздуховодов и фасонных изделий необходим для слаженной работы всей системы. Проведение вычислений — дело трудоемкое и требующее определенных затрат. Хотя сегодня этот процесс легко провести с применением специальных формул или целых компьютерных программ.

Расчет площади воздуховодов и фасонных изделий согласно формуле выглядит следующим образом:

  • Sc — площадь сечения;
  • L — расход циркулируемого потока;
  • V — скорость потока в определенном месте (м/с);
  • 2,778 — фиксированное значение (коэффициент).

Фасонные изделия

Для вычисления необходимых параметров как фасонных изделий, так и самой вентиляции, нет необходимости самостоятельно пользоваться формулами. Чтобы упростить весь процесс проектирования инженерами были созданы специализированные программы (калькуляторы), которые способны сами произвести расчёт. Единственное, что требуется от пользователя – ввести запрашиваемые значения.

Самостоятельно произвести расчёт значения для креплений фасонных изделий может исключительно инженер. Однако, даже профессионалы не способны обойтись без специальных таблиц, значений и формул с необходимыми коэффициентами. Человеку без достаточных познаний в соответствующих областях не под силу самостоятельно выполнить проектирование.

При расчёте диаметра воздуховода необходимо использовать таблицу равнозначных диаметров. Эта таблица учитывает воздуховоды с большим сечением, где понижение давления на трение равносильно сниженному давлению прямоугольных конструкций. Равнозначные диаметры необходимы только если нужно выполнить подсчет прямоугольных фасадов, используя таблицы для конструкций с большим сечением (круглых).

Эквивалентное (равнозначное) значение возможно узнать одним из трёх способов:

  • по расходу воздуха;
  • по скорости потока воздуха;
  • по поперечному сечению воздуховода.

Каждое из этих значений полностью связано с каким-либо параметром системы вентиляции. Чтобы определить каждый параметр потребуется использовать индивидуальную таблицу вычисления. В качестве итогового результата получится значение потери давления на трение. Если все измерения были верными, независимо от способа вычисления результат будет полностью идентичен. Ошибки в вычислениях могут возникнуть вследствие нарушения предписаний по измерениям.

Расчет воздуховодов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Алгоритм выполнения расчетов

При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.

При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.

Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.

Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.

Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.

Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями

Чаще всего используется следующий алгоритм проведения вычислений:

  1. Составление аксонометрической схемы, в которой перечисляются все элементы.
  2. На базе этой схемы рассчитывается длина каждого канала.
  3. Измеряется расход воздуха.
  4. Определяется скорость потока и давление на каждом участке системы.
  5. Выполняется расчет потерь на трение.
  6. С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.

При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.

Вычисление площади сечения и диаметра

Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.

Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.

Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.

Для вычислений используется следующая формула:

S = L/3600*V,

при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);

Используя следующую формулу, можно посчитать диаметр воздуховода (D):

D = 1000*√(4*S/π), где

S – площадь сечения (м²);

π – 3,14.

Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.

Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения

При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.

Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.

Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.

Расчет потери давления на сопротивление

По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).

Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети

Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.

Применяется эта формула:

P=R*L+Ei*V2*Y/2, где

R – удельная потеря давления на трение на определенном участке воздуховода;

L – длина участка (м);

Еi – суммарный коэффициент локальной потери;

V – скорость воздуха (м/с);

Y – плотность воздуха (кг/м3).

Значения R определяются по нормативам. Также этот показатель можно рассчитать.

Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:

R = (X*D/В) * (V*V*Y)/2g, где

X – коэфф. сопротивления трения;

L – длина (м);

D – диаметр (м);

V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);

g – 9,8 м/с².

Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.

Общие сведения для вычисления

Диаметр вентиляционных труб зависит от площади дома и количества проживающих людей

К ключевым показателям относится площадь сечения короба, которая определяет скорость передвижения потоков. Закономерность проявляется в том, что при увеличении габаритов снижается давление и наоборот. Расчет квадратуры воздуховодов ведется несколькими способами, чтобы иметь возможность для сравнения итогов.

Показатели для выбора труб можно рассчитать по значениям:

  • в соответствии с гигиеническими и санитарными нормами, приведенными в СанПиН;
  • по числу находящихся в помещении людей;
  • по площади и объему комнаты.

Подсчет проводится для отдельного помещения или строения в целом. Количество материала определяется на основе конфигурации и габаритов системы. Для круглых труб нужен диаметр и общая протяженность, а прямоугольные рассчитываются с применением ширины, высоты и длины магистрали.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий