Солнечные батареи для дачи и дома: виды, принцип работы и порядок расчета гелиосистем

Принцип действия солнечной батареи

Солнечная батарея — это совокупность панелей, смонтированных на крыше дома. Устройство передаёт постоянный ток через контроллер на аккумуляторные батареи и, через инвертор – к потребителю уже в виде переменного тока в 220 Вольт.

Каждая панель состоит из фотоэлектрических элементов, полупроводником служит кремний. Энергия солнца заставляет электроны кремния перемещаться из верхнего слоя в нижний. Устройство фотоэлемента – это по сути два тонких слоя кремниевого напыления. Энергоресурс передаётся по проводникам, вырабатывается постоянный ток, а вследствие – электричество. Ток производится при параллельном подключении.

Контроллер, работающий по принципу реостата, передаёт энергию от солнечной батареи к аккумуляторной батарее, следя за эффективной зарядкой. Диоды соединяют элементы системы панели, предотвращая перегрев от избыточного напряжения и обеспечивая бесперебойную зарядку аккумуляторов. Аккумуляторные батареи используются не только для накопления, но и для стабилизации энергии.

Инвертор преобразует постоянный ток от солнечных батарей в переменный, позволяя сразу использовать его в быту. 12 Вольт постоянного тока из батареи превращаются в 220 Вольт переменного. Именно такое напряжение идёт на работу уличных фонарей и ламп для освещения дома. Монтаж всей готовой системы можно осуществить своими руками.

Коллекторная система отопления

Наибольшей эффективности и отдачи можно добиться, установив вместо солнечных модулей коллекторы – наружные установки, в которых под действием солнечного излучения происходит нагрев воды. Такая система является более логичной и естественной, так как не потребует нагревания теплоносителя другими устройствами.

Рассмотрим конструкцию и принцип действия приборов двух основных видов: плоских и трубчатых.

Плоский вариант для самостоятельного изготовления

Конструкция плоских установок настолько проста, что опытные мастера-умельцы собирают кустарные аналоги своими руками, часть деталей купив в специализированном магазине, часть соорудив из подручного материала.

Внутри стального или алюминиевого утепленного короба закреплена пластина, адсорбирующая солнечное тепло. Чаще всего она покрыта слоем черного хрома. Сверху теплопоглотитель защищен герметичной прозрачной крышкой.

Нагревание воды происходит в трубках, уложенных змейкой и соединенных с пластиной. Вода или антифриз поступает внутрь короба через впускной патрубок, нагревается в трубках и перемещается на выход – к выпускному патрубку.


Светопропускная способность крышки объясняется использованием прозрачного материала – прочного закаленного стекла или пластика (например, поликарбоната). Чтобы солнечные лучи не отражались, стеклянную или пластиковую поверхность матируют (+)

Существует два вида подключения, однотрубное и двухтрубное, принципиальной разницы в выборе нет. Но существует большая разница в том, каким способом теплоноситель будет подаваться к коллекторам – самотечным или с помощью насоса. Первый вариант признан неэффективным из-за слабой скорости передвижения воды, по принципу нагрева он напоминает емкость для летнего душа.

Функционирование второго варианта происходит благодаря подключению циркуляционного насоса, который подает теплоноситель в принудительном порядке. Источником энергии для работы насосного оборудования может стать энергосистема на солнечных батареях.


Температура теплоносителя при нагреве солнечным коллектором достигает 45-60 ºС, на выходе максимальный показатель – 35-40 ºС. Для повышения эффективности работы отопительной системы наряду с радиаторами используют «теплые полы» (+)

Трубчатые коллекторы – решение для северных регионов

Общий принцип работы напоминает функционирование плоских аналогов, но с одной разницей – теплообменные трубки с теплоносителем находятся внутри стеклянных колб. Сами трубки бывают перьевыми, запаянными с одной стороны и внешним видом напоминающие перья, и коаксиальными (вакуумными), вставленными друг в друга и запаянными с обеих сторон.

Теплообменники также бывают разными:

  • система преобразования солнечной энергии в тепловую Heat-pipe;
  • обычная трубка для перемещения теплоносителя U-type.

Второй вид теплообменников признан более эффективным, но недостаточно популярным из-за стоимости ремонта: при выходе из строя одной трубки придется производить замену всей секции.

Трубка Heat-pipe не является частью целого сегмента, поэтому поменять ее можно за 2-3 минуты. Вышедшие из строя коаксиальные элементы ремонтируют, просто сняв заглушку и заменив поврежденный канал.


Схема, объясняющая цикличность нагревательного процесса внутри вакуумных трубок: холодная жидкость под воздействием солнечного тепла нагревается и испаряется, уступая место следующей порции холодного теплоносителя (+)

Проанализировав технические характеристики коллекторов разного типа и обобщив опыт их использования, решили, что для южных областей больше подходят плоские коллекторы, а для северных – трубчатые. Особенно хорошо зарекомендовали себя в условиях сурового климата установки с системой Heat-pipe. Они обладают нагревательной способностью даже в пасмурные дни и ночью, «питаясь» минимальным количеством солнечного света.


Образец стандартной схемы подключения солнечных коллекторов к бойлерному оборудованию: насосная станция обеспечивает циркуляцию воды, контроллер регулирует процесс нагревания

Обработка данных и их оптимизация

При расчете солнечных батарей на дом стоит определить, каким образом они будут использоваться – в качестве основного источника питания или же резервного. В случае применения солнечных электростанций в качестве дополнительного питания, информация о почасовых нагрузках и среднесуточном потреблении энергии позволит использовать эти мощности более эффективно. Например, при перебоях с основным электричеством, энергоемкие бытовые приборы будут применяться минимальное количество времени, либо вовсе не будут включаться.

А вот в тех домах, где используется только электроэнергия от солнечных батарей, стоит обратить особое внимание на уровень почасовых нагрузок. При этом желательно применять электроприборы таким образом, чтобы предотвратить скачки энергопотребления в сторону минимальных или максимальных значений

Например, при рациональном распределении нагрузки и эффективном использовании солнечной электроподстанции, можно сократить ежесуточное энергопотребление с 18 до 12 кВт/ч, а потребляемую мощность – с 750 до 500 Вт.

Аналогичным образом производится оптимизация потребления энергии от резервных солнечных батарей. Таким образом, можно будет избежать дополнительных расходов на приобретение аккумуляторов повышенной мощности.

Плюсы и минусы

Как у любого технического устройства, так и солнечных коллекторов, есть свои достоинства и недостатки, которые определяют способность использования подобных изделий в тех или иных условиях эксплуатации.

К плюсам использования относятся:

  • Экологическая безопасность как для окружающей среды, так и для человека.
  • Возобновляемость и неисчерпаемый ресурс используемой энергии.
  • Возможность создания полностью автономной системы отопления и горячего водоснабжения от внешних источников энергии.
  • Продолжительные сроки эксплуатации.
  • Возможность модернизации автономной системы и ее интеграции, в случае необходимости, в централизованную систему отопления (от внешних энергоснабжающих источников).
  • Оптимизация системы отопления отдельно взятого объекта в соответствии с заданными параметрами.

Недостатками использования можно считать:

  • Высокая стоимость оборудования и выполнения монтажных работ, определяют потребность в значительных финансовых затратах на начальном этапе использования.
  • Эффективность работы зависит от погодных условий, региона и ландшафта размещения, конструкции строительных элементов, на которых выполняется установка коллекторов (форма крыши, стен или отдельно стоящих элементов).

Виды солнечных модулей-панелей

Солнечные модули-панели собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Широкое распространение получили два типа ФЭП.

Они различаются типами кремниевых полупроводников, используемых для их изготовления, это:

  • Монокристаллический. Это элементы, полученные путем разрезания искусственно выращенного кристалла кремния на тонкие пластины. Самый производительный и дорогой вариант. Средняя эффективность в районе 17%, можно встретить монокристаллические солнечные элементы с более высокими характеристиками.
  • Поликристаллический. Это солнечные элементы, изготовленные из плавленого кремния путем длительного охлаждения. Простота изготовления делает цену доступной, но производительность поликристаллического варианта не превышает 12%.

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородные поверхностные структуры квадратов со срезанными углами (псевдоквадраты).

Так выглядят фотоэлектрические преобразователи FEP: характеристики солнечного модуля не зависят от типа используемых элементов – это влияет только на размер и цену

Панели первой модели с одинаковой мощностью больше, чем у второй, из-за меньшей эффективности (18% против 22%). Но в среднем десять процентов дешевле и пользуются преимущественным спросом.

Галерея изображенийФото из Пластины из монокристаллического кремния в несколько раз производительнее поликристаллических аналогов, но значительно дороже: на тыльной стороне пластин кремния проложены токопроводящие линии, на лицевой стороне более дешевые пластины поликристаллического кремния, поэтому он более популярен с независимыми мастерами. Сварка элементов производится аналогично: поликристаллические пластины соединяются в модули, в которых должно быть 36 или 72 штуки. Панели собираются из модульных батарей Монокристаллический элемент солнечной батареи Линии передачи отрицательного тока на пластине Поликристаллические элементы для сборки солнечных батарей Боковые стороны поликристаллических солнечных элементов

С правилами и нюансами выбора солнечных батарей для энергоснабжения для автономного отопления вы можете ознакомиться здесь.

Установка системы солнечных батарей

Солнечная панель может устанавливаться в любом удобном месте, куда открыто проникают солнечные лучи. Это может быть:

  • На крыше.
  • На стене дома с южной стороны.
  • На земле при участии крепежной системы.
  • На балконе.

Чаще всего, батарея устанавливается в частном доме именно на крыше. Для правильной установки на нашем сайте представлены системы креплений солнечных панелей. Здесь отсутствует заслонение тенью, и солнечный свет попадает с максимальной отдачей. Однако, чтобы получить высокую эффективность и «выжать» из работы системы достаточное количество энергии, необходимо постоянно менять угол наклона панелей, так как в разное время года солнце меняет свою траекторию. Также проследите, чтобы панели не заслоняли деревья, другие здания или прочие объекты.

Установка солнечной системы не подразумевает наличие только одних панелей. Для полноценной и правильной работы требуются следующие технические устройства:

  • Аккумулятор
  • Генератор
  • Инвертор
  • Контроллер
  • Соединительная коробка
  • Потребитель.

Схема подключения солнечной системы следующая: батарея подсоединяется к контроллеру, он подводится к аккумулятору для исключения перенапряжения, далее к инвертору, чтобы в результате получить электричество напряжением 220В.

Если вырабатываемой панелями мощности недостаточно для обеспечения всего дома, тогда можно соединить солнечные модули с общей сетью, но в этом случае схема усложняется и здесь без специалистов не обойтись. Основной смысл заключается в распределении тока между резервированной и нерезервированной нагрузкой. Такой вариант идеально подходит для зимнего времени, когда солнечной энергии не хватает на обеспечение всех потребностей дома в электричестве.

Расчет мощности солнечных батарей

Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.

Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.

Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей. Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.

При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет. На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб. Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.

Для примера рассмотрим усредненную дневную инсоляцию по месяцам с одного из серверов метеослужб для г. Москвы. Данные указаны с учетом атмосферных явлений и являются усредненными за несколько лет.

Единица измерения инсоляции в таблице кВт*ч/м2/сутки.

Угол наклона плоскости, градусы по отношению к земле (0°- инсоляция на горизонтальную плоскость, 90 – инсоляция на вертикальную плоскость и т. п.), при этом плоскость ориентирована на Юг.

Янв.Февр.МартАпр.МайИюньИюльАвг.Сент.Окт.Нояб.Дек.Среднегодовая инсоляция кВт*ч/м2/сутки
0.751.562.813.875.135.275.144.302.631.490.810.502.86
40°1.512.553.784.345.124.975.004.573.222.201.461.083.32
55°1.662.703.824.164.704.514.534.313.172.271.581.203.22
70°1.722.713.673.794.183.954.003.852.972.241.621.263.00
90°1.652.503.193.073.212.993.053.082.512.021.531.222.50
Оптимальный угол72.063.050.034.020.011.016.027.043.058.069.074.044.6

Как видно, самым неблагоприятным месяцем для данного региона является декабрь, дневная усредненная инсоляция на горизонтальную поверхность земли составляет 0,5 кВтч/м2/сутки, на вертикальную – 1,22 кВт*ч/м2/сутки. При угле наклона плоскости относительно земли 70 градусов инсоляция будет составлять 1,26 кВтч/м2/день, оптимальным углом для декабря является 74 градуса. Самым благоприятным месяцем является июнь и инсоляция на горизонтальную поверхность составит 5,27 кВтч/м2/сутки, оптимальный угол наклона для июня 11 градусов.

Угол наклона солнечной панели, при круглогодичном использовании в системе, которая потребляет в среднем одну и ту же мощность независимо от времени года, должен совпадать с оптимальным углом наклона самого неблагоприятного месяца по количеству солнечной радиации. Оптимальным углом наклона для декабря в г. Москва является 74 градус, таким образом и стоит устанавливать солнечную панель, так как в другие месяцы инсоляция заметно больше, и как следствие выработки электроэнергии будет более чем достаточно. Более того, в зимнее время при углах наклона 70-90 градусов, на солнечной панели не будут скапливаться осадки в виде снега. Если задачей является получение максимальной мощности от солнечных панелей, в течение всего года, то требуется постоянно ориентировать солнечную панель максимально перпендикулярно солнцу.

Формула расчета мощности солнечных панелей

Pсп=Eп*k* Pинс / Eинс, где:

Pсп — мощность солнечных панелей, Вт;

Еп — потребляемая энергия, Втч в сутки;

Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;

Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2-1,4.

Формула расчета вырабатываемой энергии солнечными батареями

Eв=Eинс*Pсп/Pинс*k, где:

Pсп — мощность солнечных панелей, Вт;

Ев — вырабатываемая энергия солнечными панелями, Втч в сутки;

Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;

Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2.

Стоимость солнечных батарей и аккумуляторов


>

Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны. Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

Пример расчета

Исходные данные (произвольно):

  • Телевизор мощностью Pа = 100 Вт работает t = 5 часов в сутки и 7 дней в неделю.
  • Осветительные приборы общей мощностью Pа = 1000 Вт, t = 6 часов в сутки и 7 дней в неделю.
  • Освещенность солнечной панели: T — 5,5 час в сутки (широта Москвы, лето).
  • КПД инвертора — 0,9.
  • Характеристика одной аккумуляторной батареи: Са — 225 А/ч, Uа — 12 В.
  • Уровень разрядки АКБ — 0,7.

При суммарной мощности приборов 1100 Вт среднесуточный расход энергии составит Wн = 45,500 кВтч в неделю или Wс= 6,500 кВтч в сутки. Для точного расчета требуется учитывать вероятность одновременного использования приборов, пиковые и реактивные нагрузки или распределение нагрузки в течение суток.

По суммарной мощности потребителей 1,1 кВт выбираем инвертор мощностью 2 кВт (с перспективой роста и компенсации неучтенных нагрузок). Входное напряжение инвертора Uинв- 24 В.

Полная суточная токовая нагрузка на инвертор в А*ч с учетом КПД инвертора: Wc/КПД*Uинв = 6500/0,9*24 = 297,91 А*ч.

Эта величина важна для определения количества АКБ, тока подзарядки и, в конечном счете, надежности системы.

В нашем случае:

  • Токовая нагрузка увеличивается в два раза для обеспечения двухдневного энергоснабжения.
  • Учитываем допустимую глубину разрядки батареи 0,7.
  • Получаем суммарную токовую нагрузку — 297,91*2*0,7 = 851,19 А*ч.

С учетом характеристики одной аккумуляторной батареи Са = 225 А*ч получаем число блоков батарей на напряжение 24 В (напряжение инвертора) 851,19/225 = 3,78. Округляем до 4-х. Для того чтобы получить Uа (12 В) на одну батарею соединяем в одном блоке две батареи последовательно. Итого получается 4 параллельно соединенных блока, состоящих из двух батарей каждый. Всего 8 аккумуляторов.

В дополнение к нагрузке потребителя необходимо добавить нагрузку, учитывающую подзарядку батарей. Она составляет 10% суммарной мощности аккумуляторного модуля (8*225*12) = 21600 Втч*10% = 216 Втч. Суммарная среднесуточное потребление будет составлять — 6500+216 = 6716 Втч.

Для обеспечения системы энергией солнечная батарея должна за время освещенности (T =5,5 часов) выработать среднесуточную потребность в электроэнергии (6716 Втч). Следовательно, блок из солнечных модулей (с выходным напряжением 24 В и мощностью 200 Вт каждый) должен состоять из 6 модулей (6716/5,5*200 = 6,10).

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Где крепить?

Крыша. Закрепление солнечных батарей на крыше – очевидное, но не всегда лучшее решение для частного дома. Направленный на юг скат крыши действительно обеспечивает наилучший результат из стационарных способов крепления солнечных батарей, но на этом варианты не ограничиваются.


При таком закреплении скат крыши должен быть на ЮГ

Стены. Если стена «смотрит» на юг – она отлично подходит для размещения на ней солнечных батарей. Понаблюдайте, не падает ли на стену тень от деревьев, хозяйственных построек, забора, иных объектов. Не размещайте солнечные панели в этих местах.


Желательно также использовать южную стену

Не стоит ставить панели на восточной или западной стенах. Таким образом, в самый интенсивный период светового дня вы будете получать на свои панели только косые лучи, что значительно снижает эффективность системы

Свободное размещение. Самый эффективный вариант размещения солнечных батарей, но требует свободной площади во дворе. При свободном размещении солнечных батарей в частном доме их можно закреплять на шарнирах и таким образом, направляя их поверхность к солнцу под 90°.


Такое расположение батарей позволяет получить от них максимум мощности

Преимущества и недостатки

Солнечные батареи, так же как другие устройства обладают своими достоинствами и недостатками. К несомненным плюсам этих систем можно отнести следующие:

  • Возможность автономной работы позволяет организовать питание объектов, электронных устройств и освещения, удаленных на значительное расстояние от стационарных электрических сетей.
  • Значительная экономия денежных средств в процессе эксплуатации. Солнечный свет, превращающийся в электроэнергию, ничего не стоит и не требует дополнительных расходов. Платить приходится лишь за инверторы и аккумуляторные батареи, требующие периодической замены. И даже в этом случае солнечные панели окупятся примерно за 10 лет при среднем гарантийном сроке службы в 25-30 лет. При соблюдении всех правил эксплуатации, батареи смогут прослужить еще дольше.
  • По сравнению с обычными электростанциями, потребляющими топливо и загрязняющими окружающую среду, схема работы солнечных панелей отличается экологической чистотой и отсутствием шума.

Тем не менее, данные устройства обладают и серьезными недостатками, которые следует заранее учитывать в предварительных расчетах:

  • Высокая стоимость не только панелей, но и дополнительных компонентов – инверторов, контроллеров, аккумуляторных батарей.
  • Окупаемость наступает слишком долго. Деньги в течение длительного времени оказываются извлеченными из оборота.
  • Солнечные системы с фотоэлектрическими элементами требуют очень много места. Довольно часто для этих целей приходится задействовать не только всю крышу, но и стены здания, серьезно нарушая проектные дизайнерские решения. Дополнительное место необходимо аккумуляторным батареям с большой емкостью, которые в отдельных случаях могут занять целое помещение.
  • Процесс вырабатывания электроэнергии происходит неравномерно, в зависимости от времени суток. Этот недостаток компенсируется аккумуляторными батареями, которые днем накапливают электроэнергию, а ночью отдают ее потребителям.

Электрические солнечные батареи

Интерес к альтернативным источникам электроэнергии не утихает, а наоборот – растет. Причин тому много, начиная от высоких тарифов «на свет» и заканчивая банальным отсутствием возможности подключиться к электросети. Последняя проблема актуальна для владельцев загородных домов и дач – отсутствие электрификации делает длительное проживание невозможным. Что касается стоимости электроэнергии в России, то она постоянно растет.

Солнечная батарея – это альтернативный источник электроэнергии. И сегодня популярность таких источников растет, как растет и их эффективность. Если первые батареи не могли похвастаться высоким КПД преобразования энергии солнца в электроэнергию, то современные образцы отличаются довольно высокой мощностью и эффективностью – например, одна солнечная панель AXITEC AC-260P/156-60S при размерах 1640х992х40 мм обладает мощностью 240 Вт.

Солнечный модуль AXITEC AC-260P/156-60S

Отдав под установку солнечных батарей довольно большую площадь, можно в полном объеме обеспечить свое домовладение практически дармовой электроэнергией. Сегодня ими пользуются дачники, владельцы загородных домов, владельцы мобильных домов (трейлеров). Востребованы они и там, где нужно обеспечить энергией какие-то небольшие объекты – оборудование мониторинга уровня рек, метеостанции, осветительные лампы на загородных трассах.

Давайте посмотрим, каковы преимущества от использования солнечных батарей:

  • Независимость от поставщиков электроэнергии – внезапные отключения света теперь не страшны;
  • Экологическая чистота – солнечные батареи не загрязняют окружающую среду;
  • Полная бесшумность – в отличие от дизельных, бензиновых и газовых генераторов, батареи работают без каких-либо звуков;
  • Для установки оборудования не нужны какие-либо разрешения, лицензии и прочие документы.

Есть и недостатки – некоторых из них довольно серьезные:

Эти панели нуждаются в регулярной чистке от пыли и грязи.

  • Высокая стоимость оборудования – цены на готовые комплекты составляют от 20000 рублей и выше;
  • Необходимость в регулярном обновлении аккумуляторов (отдают энергию в ночное время) – со временем они теряют свой ресурс;
  • Падение эффективности системы в зимнее время – наблюдается недостаток света для работы оборудования на полную мощность;
  • Батареи нужно регулярно очищать – на них оседает пыль, что несколько снижает их эффективность. Зимой они будут залеплены снегом;
  • В некоторых регионах использование солнечных батарей затруднено из-за малого количества солнечных дней. К тому же, некоторые панели боятся сурового российского климата.

Недостатки есть, и некоторые из них довольно серьезные. Одна солнечная панель стоит от 7-8 тыс. рублей и выше, а для того чтобы выработать достаточное количество электроэнергии, понадобятся несколько таких батарей. Сюда же следует включить затраты на покупку аккумуляторов и преобразователей.

Стоимость солнечных батарей в комплектах для дома может достигать 500 тыс. рублей и даже выше – это довольно мощные электростанции, которые могут отдавать в нагрузку до 5 кВт электрической энергии.

Принцип работы солнечных батарей очень прост – они преобразуют солнечную энергию в электрическую за счет применяемых в их конструкции преобразователей. Максимальный показатель эффективности преобразования составляет около 40% (в идеальных условиях). На практике эффективность падает из-за постепенного старения фотоэлементов, снижения прозрачности стекол и оседающей на панелях грязи. Для достижения максимальной энергоэффективности они монтируются на южных скатах крыш (угол около 40-45 градусов).

Заключение

Приведенные расчеты и соображения позволяют сделать следующие выводы.

  1. Установка для отопления в частном доме полностью автономной солнечной электростанции вполне возможна. Однако стоимость её составит  около $ 45 000, а для размещения оборудования понадобится от 150 квадратных метров площади.
  2. Наиболее выгодным вариантом представляется интеграция «солнечного» отопления в общее энергоснабжение дома и/или вспомогательное снабжение энергией отдельных элементов уже существующие системы обогрева. Это позволит использовать станцию для отопления дома солнечными батареями максимально рационально. А заодно на порядок уменьшить её стоимость, мощность и площадь для монтажа.
  3. Главным преимуществом монтажа фотоэлектрической системы является е абсолютная независимость от внешних источников. Именно поэтому в отдаленных регионах России (например, Якутии) такие СЭС представляют собой не только выгодный, но и наиболее надежный способ получения электроэнергии.
Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий