Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

2 Метод удельных линейных потерь давления

Последовательность
гидравлического расчета методом удельных
линейных потерь давления:

а) вычерчивается
аксонометрическая схемасистемы отопления
(М 1:100).
На
аксонометрической схеме выбирается
главное циркуляционное кольцо. Для
проведения гидравлического расчета
выбираем наиболее нагруженное кольцо,
которое является расчетным (главным),
и второстепенное кольцо (приложение
Ж).При
тупиковом движении теплоносителя
главное циркуляционное кольцо проходит
через наиболее нагруженный и удаленный
от теплового центра (узла) стояк, при
попутном движении – через наиболее
нагруженный средний стояк.

б) главное циркуляционное
кольцо разбивается на расчетные
участки,
обозначаемые порядковым номером (начиная
от реперного стояка); указывается расход
теплоносителя на участке G
, кг/ч, длина участка l,
м;

в) для предварительного
выбора диаметра труб определяются
средние удельные потери давления на
трение:

,
Па/м (5.3)

где j
– коэффициент, учитывающий долю потерь
давления на магистралях и стояках, j=0,3
–для магистралей, j=0,7
– для стояков;

Δpр – располагаемое
давление в системе отопления, Па,

Δpр=25 кПа — для
теплоносителяtг=105
С.

г) по величине Rсри
расходу теплоносителя на участке G(приложение Е) находятся
предварительные диаметры труб d,
мм, фактические удельные потери давления
R, Па/м, фактическая
скорость теплоносителя υ,
м/с. Полученные данные заносятся в
таблицу 5.2.

д) определяются потери
давления на участках:

,
Па (5.4)

где R –
удельные потери давления на трение,
Па/м;

l – длина участка, м;

Z
– потери давления на местных сопротивлениях,
Па,

;
(5.5)

ξ – коэффициент,
учитывающий местное сопротивление на
участке, (приложения Б, В);

ρ – плотность
теплоносителя, кг/м3,
(приложение Д);

υ — скоростьтеплоносителя
на участке, м/с, (приложение Е);

е) после предварительного
выбора диаметров труб выполняется
гидравлическая увязка, которая не должна
превышать 15%.

ж) если увязка проходит,
то начинают выполнять расчет второстепенных
циркуляционных колец (аналогично), если
же нет, то на нужных участках устанавливаются
шайбы. Диаметр шайбы подбирают по
формуле:

,
мм, (5.6)

гдеGст
– расход теплоносителя в стояке, кг/ч,
(таблица 3.3);

рш
– требуемые потери давления в шайбе,
Па.

Диафрагмы
устанавливаются у крана на основании
стояка в месте присоединения к подающей
магистрали.

Диафрагмы
диаметром менее 5 мм не устанавливаются.

По
результатам расчетов заполняются
таблицы5.2, 5.3.

1.
Графа 1
– проставляем номера участков;

2.
Графа 2
– в соответствии с аксонометрической
схемой по участкам записываем тепловые
нагрузки, Q,
Вт;

3.
Рассчитываем расход воды в реперном
стояке для расчетного участка (формула
5.1), графа 3:

4.
В соответствии с таблицей 4.2 по диаметру
стояка Dу,
мм выбираем диаметры подводок и
замыкающего участка: Dу(п),
мм; Dу(з),
мм.

5.
Рассчитываем коэффициенты местных
сопротивлений на участке 1 (приложения
Б, В), сумму записываем в графу 10 таблиц
5.2, 5.3.

На
границе двух участков местное сопротивление
относим к участку с меньшим расходом
воды.

Результаты
расчетов сведены в таблицу
5.1.

Таблица
5.1 – Местные сопротивления на расчетных
участках

№ участка,
вид местного сопротивления



Например:Участок
3

2
тройника на проход, =1;

уч(3)=
2х1=2

Например:
Стояк 3

1)
чугунный радиатор – 3 шт., =1,4;

2)
кран регулирующий двойной регулировки
– 6 шт., =13;

3)
отвод гнутый под углом 90
– 6 шт., =0,6;

4)
вентиль обыкновенный прямоточный –
2 шт., =3;

5)
тройник поворотный на ответвление –
2 шт., =1,5.

ст3
= 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = 96,2

Влияние материала трубы на расчет

Для строительства газопроводов могут использоваться трубы, изготовленные только из определенных материалов: стали, полиэтилена. В некоторых случаях используются изделия из меди. В ближайшее время массовое использование получит металлопластиковые конструкции.

Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, влияющему на процесс движения газа. К тому же у стальных изделий этот показатель значительно выше, чем у пластмасс

Сегодня необходимую информацию можно получить только по стальным и полиэтиленовым трубам. Следовательно, проектирование и гидравлический расчет могут выполняться только с учетом их характеристик, как того требует Кодекс поведения профиля. А также в документе указываются данные, необходимые для расчета.

Коэффициент шероховатости всегда соответствует следующим значениям:

  • для уже использованных стальных изделий – 0,1 см;
  • для всех полиэтиленовых труб, независимо от того, новые они или нет, – 0,007 см;
  • для новых металлоконструкций – 0,01 см.

Для любого другого типа труб этот показатель в Своде правил не указывается. Поэтому использовать их для строительства нового газопровода не стоит, так как специалистам Горгаза могут потребоваться доработки. И это, опять же, дополнительные расходы.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участкаДлина участка в метрахКоличество приборов а участке, шт.
1-21,81
2-33,01
3-42,82
4-52,92

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким — все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Использование специальных программ является простейшим способом гидравлического расчета, исключающим поиск и изучение формул для проведения вычислений

Далее застройщику необходимо узнать расход газа для каждого прибора, который планируется подключить к газопроводу. К примеру, если топливо будет транспортироваться в частный дом, то там чаще всего используются плиты для приготовления пищи, всевозможные отопительные котлы, а в их паспортах всегда стоят нужные цифры.

Кроме того, потребуется знать количество конфорок у каждой плиты, которая будет подключена к трубе.

На следующем этапе сбора необходимых данных отбирается информация о падении давления в местах установки какого-либо оборудования — это может быть счетчик, клапан отсекатель, термозапорный клапан, фильтр, прочие элементы.

В этом случае нужные цифры найти просто — они содержатся в специальной таблице, приложенной к паспорту каждого изделия

Проектировщику следует обратить внимание на то, что должно указываться падение давления при максимальном потреблении газа

Из специальной таблицы, приложенной к паспорту изделий, можно узнать сведения о потере давления при подключении приборов к сети

На следующем этапе рекомендуется узнать, каково будет давление голубого топлива в точке врезки. Такие сведения могут содержать технические условия своего горгаза, ранее составленная схема будущего газопровода.

Если сеть будет состоять из нескольких участков, то их необходимо пронумеровать и указать фактическую длину. Кроме того, для каждого следует прописать все изменяемые показатели отдельно — это общий расход любого прибора, который будет использоваться, падение давления, другие значения.

В обязательном порядке понадобится коэффициент одновременности. Он учитывает возможность совместной работы всех потребителей газа, подключенных к сети. Например, всего отопительного оборудования, расположенного в многоквартирном или же частном доме.

Такие данные используются программой, выполняющей гидравлический расчет, для определения максимальной нагрузки на каком-либо участке или во всем газопроводе.

Для каждой отдельной квартиры или дома указанный коэффициент рассчитывать не нужно, так как его значения известны и указаны в приложенной ниже таблице:

Таблица с коэффициентами одновременности, данные из которой используются при любом виде расчетов. Достаточно выбрать графу, соответствующую конкретному бытовому прибору, и взять нужную цифру

Если на каком-то объекте планируется использовать более двух обогревательных котлов, печей, емкостных водонагревателей, то показатель одновременности всегда будет равняться 0,85. Что и нужно будет указать в соответствующей графе, используемой для расчета, программы.

Далее следует указать диаметр труб, а еще понадобятся коэффициенты их шероховатости, которые будут использоваться при строительстве трубопровода. Эти значения стандартные и их легко можно найти в Своде правил.

Пример выполнения расчета

Приведен пример выполнения гидравлического расчета с помощью программы для газопроводов низкого давления. В предлагаемой таблице желтым цветом выделены все данные, которые проектировщик должен ввести самостоятельно.

Они перечислены в пункте о компьютерном гидравлическом расчете, приведенном выше. Это температура газа, коэффициент кинетической вязкости, плотность.

В данном случае осуществляется расчет для котлов и плит, ввиду этого необходимо прописать точное количество конфорок, которых может быть 2 или 4. Точность важна, ведь программа автоматически выберет коэффициент одновременности.

На картинке желтым цветом выделены колонки, в которые показатели должен ввести сам проектировщик. Внизу приведена формула для расчета расхода на участке

Стоит обратить внимание на нумерацию участков — ее придумывают не самостоятельно, а берут из ранее составленной схемы, где указаны аналогичные цифры. Далее прописывается фактическая длина газопровода и так называемая расчетная, которая больше

Происходит это потому, что на всех участках, где есть местное сопротивление, необходимо увеличивать длину на 5-10%. Это делается для того, чтобы исключить недостаточное давление газа у потребителей. Программа осуществляет расчет самостоятельно

Далее прописывается фактическая длина газопровода и так называемая расчетная, которая больше. Происходит это потому, что на всех участках, где есть местное сопротивление, необходимо увеличивать длину на 5-10%. Это делается для того, чтобы исключить недостаточное давление газа у потребителей. Программа осуществляет расчет самостоятельно.

Суммарный расход в кубических метрах, для которого предусмотрена отдельная колонка, на каждом участке исчисляется заранее. Если дом многоквартирный, то нужно указывать количество жилья, причем начиная с максимального значения, как видно в соответствующей графе.

В обязательном порядке в таблицу вносятся все элементы газопровода, при прохождении которого теряется давление. В примере указаны клапан термозапорный, отсечной и счетчик. Значение потери в каждом случае бралось в паспорте изделия.

С помощью одной программы можно делать расчеты для всех видов газопроводов. На картинке исчисления для сети среднего давления

Внутренний диаметр трубы указывается согласно техническому заданию, если у горгаза есть какие-то требования, или из ранее составленной схемы. В этом случае на большинстве участков он прописан в размере 5 см, ведь большая часть газопровода идет вдоль фасада, а местный горгаз требует, чтобы диаметр был не меньше.

Если даже поверхностно ознакомиться с приведенным примером выполнения гидравлического расчета, то легко заметить, что, кроме внесенных человеком значений, присутствует большое количество других. Это все результат работы программы, так как после внесения цифр в конкретные колонки, выделенные желтым цветом, для человека работа по расчету закончена.

То есть само вычисление происходит довольно оперативно, после чего с полученными данными можно отправляться на согласование в горгаз своего города.

Назначение гидравлического расчета отопления

Пример схемы отопления с учетом расчетных данных

При работе любой системы теплоснабжения неизбежно возникает гидравлическое сопротивление при движении теплоносителя. Для учета этого параметра необходим гидравлический расчет двухтрубной системы отопления. Его суть заключается в правильном выборе компонентов системы с учетом их эксплуатационных качеств.

Фактически гидравлический расчет систем водяного отопления представляет собой сложную процедуру, во время выполнения которой учитываются все тонкости и нюансы. На первом этапе следует определиться с требуемой мощностью отопления, выбрать оптимальную схему разводки трубопроводов, а также тепловой режим работы. На основе этих данных делается гидравлический расчет системы отопления в Excel или специализированной программе. Итогом вычислений должны стать следующие параметры водяного теплоснабжения:

  • Оптимальный диаметр трубопровода. Исходя из этого можно узнать их пропускную способность, тепловые потери. С учетом выбора материала изготовления будет известно сопротивление воды о внутреннюю поверхность магистрали;
  • Потери давления и напора на определенных участках системы. Пример гидравлического расчета системы отопления позволит заранее продумать механизмы для их компенсации;
  • Расход воды ;
  • Требуемую мощность насосного оборудования. Актуально для закрытых систем с принудительной циркуляцией.

На первый взгляд гидравлическое сопротивление системы отопления сложно. Однако достаточно немного вникнуть в суть вычислений и потом можно будет их сделать самостоятельно.

Для теплоснабжения небольшого дома или квартиры также рекомендуется выполнять расчет гидравлического сопротивления системы отопления.

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов  и вычисления сопротивлений в сложных цепях.

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Гидравлический расчет системы отопления — пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 75 0 С, tо = 60 0 С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками — смотрите инструкцию по изготовлению.

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье .

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Расчет гидравлики системы отопления

Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

Шаг 1: считаем диаметр труб

В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:

1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º

1б. Расход теплоносителя G, кг/час — для однотрубной системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

5. Параметры участков:

  • расход мощности – 1 кВт на 30 м³
  • запас тепловой мощности – 20%
  • объём помещения: 18 * 2,7 = 48,6 м³
  • расход мощности: 48,6 / 30 = 1,62 кВт
  • запас на случай морозов: 1,62 * 20% = 0,324 кВт
  • итоговая мощность: 1,62 + 0,324 = 1,944 кВт

Находим в таблице наиболее близкое значения Q:

Получаем интервал внутреннего диаметра: 8-10 мм. Участок: 3-4. Длина участка: 2.8 метров.

Шаг 2: вычисление местных сопротивлений

Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

Факторы возникновения сопротивления:

Трубы для отопления

  • в самой трубе:
    • шероховатость;
    • место сужения/расширения диаметра;
    • поворот;
    • протяжённость.
  • в соединениях:
    • тройник;
    • шаровой кран;
    • приборы балансировки.

Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

  1. длина трубы на расчётном участке/l,м;
  2. диаметр трубы расчётного участка/d,мм;
  3. принятая скорость теплоносителя/u, м/с;
  4. данные регулирующей арматуры от производителя;
  5. справочные данные:
    • коэффициент трения/λ;
    • потери на трение/∆Рl, Па;
    • расчетная плотность жидкости/ρ = 971,8 кг/м3;
  6. технические характеристики изделия:
    • эквивалентная шероховатость трубы/kэ мм;
    • толщина стенки трубы/dн×δ, мм.

Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).

Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:

Шаг 3: гидравлическая увязка

Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

  • проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления );
  • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
  • технические характеристики арматуры.
  • количество местных сопротивлений на участке.

Задача. выровнять гидравлические потери в сети.

В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

Фрагмент заводских характеристик поворотного затвора

Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:

  • ξпр — приведенный коэффициент для местных сопротивлений участка;
  • А — динамическое удельное давление, Па/(кг/ч)².

Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

Приведенный коэффициент:

Шаг 4: определение потерь

Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

  • первичного контура/ΔPIк ;
  • местных систем/ΔPм;
  • теплогенератора/ΔPтг;
  • теплообменника/ΔPто.

Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.

Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, высокого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.

Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий